Extension of the CAVS model to the simulation of helical peptides in a membrane environment

Considering the effect of peptide insertion on the dipole potential of the lipid membrane, we extend the CAVS coarse-grained (CG) model to the simulation of helical peptides in a membrane environment. In this approach, the CG scheme for a peptide backbone is similar to the treatment in the united-at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-06, Vol.23 (22), p.1285-12863
Hauptverfasser: Shen, Hujun, Wu, Zhenhua, Lu, Chan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12863
container_issue 22
container_start_page 1285
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Shen, Hujun
Wu, Zhenhua
Lu, Chan
description Considering the effect of peptide insertion on the dipole potential of the lipid membrane, we extend the CAVS coarse-grained (CG) model to the simulation of helical peptides in a membrane environment. In this approach, the CG scheme for a peptide backbone is similar to the treatment in the united-atom model, while we treated the side chain of an amino acid by grouping 1-3 heavy atoms into a CG unit. The CAVS CG force field for peptides is optimized by reproducing the experimental results for the backbone ( , ψ ) distribution and predicting the PMF profiles of transferring organic molecules in a lipid bilayer membrane obtained from all-atom simulations. The CAVS simulation of a helical peptide in a phosphatidylcholine (PC) lipid bilayer revealed that the insertion of a peptide increases the dipole potential of the PC lipid bilayer, in which the peptide and its neutralized ions make a significant contribution. Finally, we carried out the CAVS simulation for five different helical peptides in the PC lipid bilayer to explore the behavior of peptide tilt, showing excellent agreement with the all-atom simulations. Our work suggests that the peptide tilt should relieve the deformation stress from the lipid bilayer, and the peptide aggregation could reduce the peptide tilt by resisting the deformation stress from the surrounding lipids. The CAVS model demonstrated that the insertion of a KALP peptide increased the dipole potential of the DMPC bilayer, and the aggregation of KALP peptides could reduce the tilt angle.
doi_str_mv 10.1039/d1cp01238j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539256474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539256474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-ac2cf3a6a0bb59b138ff420e8a0dff5eb8233001f7397d73e701cb2d02e42ed23</originalsourceid><addsrcrecordid>eNpd0UtLxDAQB_AgCq6rF-9CwIsI1Tz6PC7r-mJBwcfFQ0nTCZulTWqSin57uw9W8DTD8GP4M4PQKSVXlPDiuqayI5TxfLmHRjROeVSQPN7f9Vl6iI68XxJCaEL5CH3MvgMYr63BVuGwADydvL_g1tbQ4GDXE6_bvhFhaxbQaCka3EEXdA0ea4MFbqGtnDCAwXxpZ00LJhyjAyUaDyfbOkZvt7PX6X00f7p7mE7mkWQ5DZGQTCouUkGqKikqynOlYkYgF6RWKoEqZ5wPeVXGi6zOOGSEyorVhEHMoGZ8jC42eztnP3vwoWy1l9A0Qx7b-5IlPMljliUrev6PLm3vzJBupQqWpHEWD-pyo6Sz3jtQZed0K9xPSUm5unN5Q6fP6zs_Dvhsg52XO_f3B_4LZ0F5fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539256474</pqid></control><display><type>article</type><title>Extension of the CAVS model to the simulation of helical peptides in a membrane environment</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Shen, Hujun ; Wu, Zhenhua ; Lu, Chan</creator><creatorcontrib>Shen, Hujun ; Wu, Zhenhua ; Lu, Chan</creatorcontrib><description>Considering the effect of peptide insertion on the dipole potential of the lipid membrane, we extend the CAVS coarse-grained (CG) model to the simulation of helical peptides in a membrane environment. In this approach, the CG scheme for a peptide backbone is similar to the treatment in the united-atom model, while we treated the side chain of an amino acid by grouping 1-3 heavy atoms into a CG unit. The CAVS CG force field for peptides is optimized by reproducing the experimental results for the backbone ( , ψ ) distribution and predicting the PMF profiles of transferring organic molecules in a lipid bilayer membrane obtained from all-atom simulations. The CAVS simulation of a helical peptide in a phosphatidylcholine (PC) lipid bilayer revealed that the insertion of a peptide increases the dipole potential of the PC lipid bilayer, in which the peptide and its neutralized ions make a significant contribution. Finally, we carried out the CAVS simulation for five different helical peptides in the PC lipid bilayer to explore the behavior of peptide tilt, showing excellent agreement with the all-atom simulations. Our work suggests that the peptide tilt should relieve the deformation stress from the lipid bilayer, and the peptide aggregation could reduce the peptide tilt by resisting the deformation stress from the surrounding lipids. The CAVS model demonstrated that the insertion of a KALP peptide increased the dipole potential of the DMPC bilayer, and the aggregation of KALP peptides could reduce the tilt angle.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp01238j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amino acids ; Backbone ; Dipoles ; Insertion ; Lipids ; Membranes ; Organic chemistry ; Peptides ; Phosphatidylcholine ; Potassium ; Simulation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-06, Vol.23 (22), p.1285-12863</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-ac2cf3a6a0bb59b138ff420e8a0dff5eb8233001f7397d73e701cb2d02e42ed23</citedby><cites>FETCH-LOGICAL-c281t-ac2cf3a6a0bb59b138ff420e8a0dff5eb8233001f7397d73e701cb2d02e42ed23</cites><orcidid>0000-0001-6117-0597 ; 0000-0003-0010-9180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shen, Hujun</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><creatorcontrib>Lu, Chan</creatorcontrib><title>Extension of the CAVS model to the simulation of helical peptides in a membrane environment</title><title>Physical chemistry chemical physics : PCCP</title><description>Considering the effect of peptide insertion on the dipole potential of the lipid membrane, we extend the CAVS coarse-grained (CG) model to the simulation of helical peptides in a membrane environment. In this approach, the CG scheme for a peptide backbone is similar to the treatment in the united-atom model, while we treated the side chain of an amino acid by grouping 1-3 heavy atoms into a CG unit. The CAVS CG force field for peptides is optimized by reproducing the experimental results for the backbone ( , ψ ) distribution and predicting the PMF profiles of transferring organic molecules in a lipid bilayer membrane obtained from all-atom simulations. The CAVS simulation of a helical peptide in a phosphatidylcholine (PC) lipid bilayer revealed that the insertion of a peptide increases the dipole potential of the PC lipid bilayer, in which the peptide and its neutralized ions make a significant contribution. Finally, we carried out the CAVS simulation for five different helical peptides in the PC lipid bilayer to explore the behavior of peptide tilt, showing excellent agreement with the all-atom simulations. Our work suggests that the peptide tilt should relieve the deformation stress from the lipid bilayer, and the peptide aggregation could reduce the peptide tilt by resisting the deformation stress from the surrounding lipids. The CAVS model demonstrated that the insertion of a KALP peptide increased the dipole potential of the DMPC bilayer, and the aggregation of KALP peptides could reduce the tilt angle.</description><subject>Amino acids</subject><subject>Backbone</subject><subject>Dipoles</subject><subject>Insertion</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Organic chemistry</subject><subject>Peptides</subject><subject>Phosphatidylcholine</subject><subject>Potassium</subject><subject>Simulation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLxDAQB_AgCq6rF-9CwIsI1Tz6PC7r-mJBwcfFQ0nTCZulTWqSin57uw9W8DTD8GP4M4PQKSVXlPDiuqayI5TxfLmHRjROeVSQPN7f9Vl6iI68XxJCaEL5CH3MvgMYr63BVuGwADydvL_g1tbQ4GDXE6_bvhFhaxbQaCka3EEXdA0ea4MFbqGtnDCAwXxpZ00LJhyjAyUaDyfbOkZvt7PX6X00f7p7mE7mkWQ5DZGQTCouUkGqKikqynOlYkYgF6RWKoEqZ5wPeVXGi6zOOGSEyorVhEHMoGZ8jC42eztnP3vwoWy1l9A0Qx7b-5IlPMljliUrev6PLm3vzJBupQqWpHEWD-pyo6Sz3jtQZed0K9xPSUm5unN5Q6fP6zs_Dvhsg52XO_f3B_4LZ0F5fA</recordid><startdate>20210609</startdate><enddate>20210609</enddate><creator>Shen, Hujun</creator><creator>Wu, Zhenhua</creator><creator>Lu, Chan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6117-0597</orcidid><orcidid>https://orcid.org/0000-0003-0010-9180</orcidid></search><sort><creationdate>20210609</creationdate><title>Extension of the CAVS model to the simulation of helical peptides in a membrane environment</title><author>Shen, Hujun ; Wu, Zhenhua ; Lu, Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-ac2cf3a6a0bb59b138ff420e8a0dff5eb8233001f7397d73e701cb2d02e42ed23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Backbone</topic><topic>Dipoles</topic><topic>Insertion</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Organic chemistry</topic><topic>Peptides</topic><topic>Phosphatidylcholine</topic><topic>Potassium</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Hujun</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><creatorcontrib>Lu, Chan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Hujun</au><au>Wu, Zhenhua</au><au>Lu, Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of the CAVS model to the simulation of helical peptides in a membrane environment</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-06-09</date><risdate>2021</risdate><volume>23</volume><issue>22</issue><spage>1285</spage><epage>12863</epage><pages>1285-12863</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Considering the effect of peptide insertion on the dipole potential of the lipid membrane, we extend the CAVS coarse-grained (CG) model to the simulation of helical peptides in a membrane environment. In this approach, the CG scheme for a peptide backbone is similar to the treatment in the united-atom model, while we treated the side chain of an amino acid by grouping 1-3 heavy atoms into a CG unit. The CAVS CG force field for peptides is optimized by reproducing the experimental results for the backbone ( , ψ ) distribution and predicting the PMF profiles of transferring organic molecules in a lipid bilayer membrane obtained from all-atom simulations. The CAVS simulation of a helical peptide in a phosphatidylcholine (PC) lipid bilayer revealed that the insertion of a peptide increases the dipole potential of the PC lipid bilayer, in which the peptide and its neutralized ions make a significant contribution. Finally, we carried out the CAVS simulation for five different helical peptides in the PC lipid bilayer to explore the behavior of peptide tilt, showing excellent agreement with the all-atom simulations. Our work suggests that the peptide tilt should relieve the deformation stress from the lipid bilayer, and the peptide aggregation could reduce the peptide tilt by resisting the deformation stress from the surrounding lipids. The CAVS model demonstrated that the insertion of a KALP peptide increased the dipole potential of the DMPC bilayer, and the aggregation of KALP peptides could reduce the tilt angle.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp01238j</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6117-0597</orcidid><orcidid>https://orcid.org/0000-0003-0010-9180</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-06, Vol.23 (22), p.1285-12863
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_journals_2539256474
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Amino acids
Backbone
Dipoles
Insertion
Lipids
Membranes
Organic chemistry
Peptides
Phosphatidylcholine
Potassium
Simulation
title Extension of the CAVS model to the simulation of helical peptides in a membrane environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20the%20CAVS%20model%20to%20the%20simulation%20of%20helical%20peptides%20in%20a%20membrane%20environment&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Shen,%20Hujun&rft.date=2021-06-09&rft.volume=23&rft.issue=22&rft.spage=1285&rft.epage=12863&rft.pages=1285-12863&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp01238j&rft_dat=%3Cproquest_cross%3E2539256474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539256474&rft_id=info:pmid/&rfr_iscdi=true