Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model

The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing enviro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2021-06, Vol.235 (6), p.1430-1442
Hauptverfasser: Darabi, Roya, Azinpour, Erfan, Fiorentin, Felipe K, Abarca, Manuel J, Cesar de Sá, Jose, Dzugan, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1442
container_issue 6
container_start_page 1430
container_title Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications
container_volume 235
creator Darabi, Roya
Azinpour, Erfan
Fiorentin, Felipe K
Abarca, Manuel J
Cesar de Sá, Jose
Dzugan, Jan
description The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing environment and microstructural anisotropies could adversely affect the quality of as-deposited parts. Among other factors, the shape, size, and distribution of the microvoids and porosities could, to some extent, have deteriorating effects on the mechanical properties of the additively manufactured components. In this work, the micromechanically motivated Gurson–Tvergaard–Needleman damage model is utilized and the performance of the model is evaluated by observing the damage accumulation in the loaded additively manufactured specimens. By relying to the laboratory-based material data and fractographic imagery from nonstandard tensile testing on fabricated samples in different building directions, numerical model predictions are found to be in a good agreement with the experimental observations. Furthermore, by resorting to the finite element software capabilities, the thermal analyses are carried out on the manufactured cube component and the influence of the process parameters on the temperature distribution is revealed.
doi_str_mv 10.1177/1464420721990049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539076699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1464420721990049</sage_id><sourcerecordid>2539076699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-2f81153d83dcc7d515cb9c26c3828239c93a10d590204831ca403e6ccba77583</originalsourceid><addsrcrecordid>eNp1kcFq3TAQRUVJoS9p910KunYrWbZldRdCmgZCsnl7M5HGrw6y5Wrk0NdV_iH_lA_pl0TOKxQCXQnp3nsG3WHsoxSfpdT6i6yaqiqFLqUxQlTmDduUopKFEro5YptVLlb9HTsmuhNCSC30hj2d_5oxDiNOCTyHyXEbxnlJkIYwvbyA39NAPPQcnBvScI9-z0eYlh5sWiI6nnCiwSOnGe1Koq_8lAiJVuoa9MGCH36jK2wIfph2PELCl2lusWnN9vFA4wutevqB_GKJFKY_D498e49xBxBdvlwjOo95Pncwwg75GBz69-xtD57ww9_zhG2_nW_PvhdXNxeXZ6dXhVXCpKLsWylr5VrlrNWulrW9NbZsrGrLtlTGGgVSuNqI3F2rpIVKKGysvQWt61adsE8H7BzDzwUpdXdhibki6spamVx1Y0x2iYPLxkAUse_m3DDEfSdFty6re72sHCkOEcpf-gf9r_8Zwcma1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539076699</pqid></control><display><type>article</type><title>Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model</title><source>Access via SAGE</source><creator>Darabi, Roya ; Azinpour, Erfan ; Fiorentin, Felipe K ; Abarca, Manuel J ; Cesar de Sá, Jose ; Dzugan, Jan</creator><creatorcontrib>Darabi, Roya ; Azinpour, Erfan ; Fiorentin, Felipe K ; Abarca, Manuel J ; Cesar de Sá, Jose ; Dzugan, Jan</creatorcontrib><description>The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing environment and microstructural anisotropies could adversely affect the quality of as-deposited parts. Among other factors, the shape, size, and distribution of the microvoids and porosities could, to some extent, have deteriorating effects on the mechanical properties of the additively manufactured components. In this work, the micromechanically motivated Gurson–Tvergaard–Needleman damage model is utilized and the performance of the model is evaluated by observing the damage accumulation in the loaded additively manufactured specimens. By relying to the laboratory-based material data and fractographic imagery from nonstandard tensile testing on fabricated samples in different building directions, numerical model predictions are found to be in a good agreement with the experimental observations. Furthermore, by resorting to the finite element software capabilities, the thermal analyses are carried out on the manufactured cube component and the influence of the process parameters on the temperature distribution is revealed.</description><identifier>ISSN: 1464-4207</identifier><identifier>EISSN: 2041-3076</identifier><identifier>DOI: 10.1177/1464420721990049</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Additive manufacturing ; Cooling rate ; Damage accumulation ; Damage assessment ; Damage localization ; Ductile fracture ; Finite element method ; Mathematical models ; Mechanical properties ; Numerical models ; Numerical prediction ; Process parameters ; Stainless steels ; Temperature distribution ; Tensile tests ; Thermal analysis</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2021-06, Vol.235 (6), p.1430-1442</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-2f81153d83dcc7d515cb9c26c3828239c93a10d590204831ca403e6ccba77583</citedby><cites>FETCH-LOGICAL-c309t-2f81153d83dcc7d515cb9c26c3828239c93a10d590204831ca403e6ccba77583</cites><orcidid>0000-0002-0807-0156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1464420721990049$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1464420721990049$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21820,27925,27926,43622,43623</link.rule.ids></links><search><creatorcontrib>Darabi, Roya</creatorcontrib><creatorcontrib>Azinpour, Erfan</creatorcontrib><creatorcontrib>Fiorentin, Felipe K</creatorcontrib><creatorcontrib>Abarca, Manuel J</creatorcontrib><creatorcontrib>Cesar de Sá, Jose</creatorcontrib><creatorcontrib>Dzugan, Jan</creatorcontrib><title>Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model</title><title>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</title><description>The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing environment and microstructural anisotropies could adversely affect the quality of as-deposited parts. Among other factors, the shape, size, and distribution of the microvoids and porosities could, to some extent, have deteriorating effects on the mechanical properties of the additively manufactured components. In this work, the micromechanically motivated Gurson–Tvergaard–Needleman damage model is utilized and the performance of the model is evaluated by observing the damage accumulation in the loaded additively manufactured specimens. By relying to the laboratory-based material data and fractographic imagery from nonstandard tensile testing on fabricated samples in different building directions, numerical model predictions are found to be in a good agreement with the experimental observations. Furthermore, by resorting to the finite element software capabilities, the thermal analyses are carried out on the manufactured cube component and the influence of the process parameters on the temperature distribution is revealed.</description><subject>Additive manufacturing</subject><subject>Cooling rate</subject><subject>Damage accumulation</subject><subject>Damage assessment</subject><subject>Damage localization</subject><subject>Ductile fracture</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Numerical models</subject><subject>Numerical prediction</subject><subject>Process parameters</subject><subject>Stainless steels</subject><subject>Temperature distribution</subject><subject>Tensile tests</subject><subject>Thermal analysis</subject><issn>1464-4207</issn><issn>2041-3076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kcFq3TAQRUVJoS9p910KunYrWbZldRdCmgZCsnl7M5HGrw6y5Wrk0NdV_iH_lA_pl0TOKxQCXQnp3nsG3WHsoxSfpdT6i6yaqiqFLqUxQlTmDduUopKFEro5YptVLlb9HTsmuhNCSC30hj2d_5oxDiNOCTyHyXEbxnlJkIYwvbyA39NAPPQcnBvScI9-z0eYlh5sWiI6nnCiwSOnGe1Koq_8lAiJVuoa9MGCH36jK2wIfph2PELCl2lusWnN9vFA4wutevqB_GKJFKY_D498e49xBxBdvlwjOo95Pncwwg75GBz69-xtD57ww9_zhG2_nW_PvhdXNxeXZ6dXhVXCpKLsWylr5VrlrNWulrW9NbZsrGrLtlTGGgVSuNqI3F2rpIVKKGysvQWt61adsE8H7BzDzwUpdXdhibki6spamVx1Y0x2iYPLxkAUse_m3DDEfSdFty6re72sHCkOEcpf-gf9r_8Zwcma1A</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Darabi, Roya</creator><creator>Azinpour, Erfan</creator><creator>Fiorentin, Felipe K</creator><creator>Abarca, Manuel J</creator><creator>Cesar de Sá, Jose</creator><creator>Dzugan, Jan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0807-0156</orcidid></search><sort><creationdate>202106</creationdate><title>Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model</title><author>Darabi, Roya ; Azinpour, Erfan ; Fiorentin, Felipe K ; Abarca, Manuel J ; Cesar de Sá, Jose ; Dzugan, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-2f81153d83dcc7d515cb9c26c3828239c93a10d590204831ca403e6ccba77583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Cooling rate</topic><topic>Damage accumulation</topic><topic>Damage assessment</topic><topic>Damage localization</topic><topic>Ductile fracture</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Numerical models</topic><topic>Numerical prediction</topic><topic>Process parameters</topic><topic>Stainless steels</topic><topic>Temperature distribution</topic><topic>Tensile tests</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darabi, Roya</creatorcontrib><creatorcontrib>Azinpour, Erfan</creatorcontrib><creatorcontrib>Fiorentin, Felipe K</creatorcontrib><creatorcontrib>Abarca, Manuel J</creatorcontrib><creatorcontrib>Cesar de Sá, Jose</creatorcontrib><creatorcontrib>Dzugan, Jan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darabi, Roya</au><au>Azinpour, Erfan</au><au>Fiorentin, Felipe K</au><au>Abarca, Manuel J</au><au>Cesar de Sá, Jose</au><au>Dzugan, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle><date>2021-06</date><risdate>2021</risdate><volume>235</volume><issue>6</issue><spage>1430</spage><epage>1442</epage><pages>1430-1442</pages><issn>1464-4207</issn><eissn>2041-3076</eissn><abstract>The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing environment and microstructural anisotropies could adversely affect the quality of as-deposited parts. Among other factors, the shape, size, and distribution of the microvoids and porosities could, to some extent, have deteriorating effects on the mechanical properties of the additively manufactured components. In this work, the micromechanically motivated Gurson–Tvergaard–Needleman damage model is utilized and the performance of the model is evaluated by observing the damage accumulation in the loaded additively manufactured specimens. By relying to the laboratory-based material data and fractographic imagery from nonstandard tensile testing on fabricated samples in different building directions, numerical model predictions are found to be in a good agreement with the experimental observations. Furthermore, by resorting to the finite element software capabilities, the thermal analyses are carried out on the manufactured cube component and the influence of the process parameters on the temperature distribution is revealed.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1464420721990049</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0807-0156</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1464-4207
ispartof Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2021-06, Vol.235 (6), p.1430-1442
issn 1464-4207
2041-3076
language eng
recordid cdi_proquest_journals_2539076699
source Access via SAGE
subjects Additive manufacturing
Cooling rate
Damage accumulation
Damage assessment
Damage localization
Ductile fracture
Finite element method
Mathematical models
Mechanical properties
Numerical models
Numerical prediction
Process parameters
Stainless steels
Temperature distribution
Tensile tests
Thermal analysis
title Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20analysis%20of%20additively%20manufactured%20tensile%20specimens:%20Assessment%20of%20localized-cooling%20rate%20and%20ductile%20fracture%20using%20the%20Gurson%E2%80%93%20Tvergaard%E2%80%93Needleman%20damage%20model&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20L,%20Journal%20of%20materials,%20design%20and%20applications&rft.au=Darabi,%20Roya&rft.date=2021-06&rft.volume=235&rft.issue=6&rft.spage=1430&rft.epage=1442&rft.pages=1430-1442&rft.issn=1464-4207&rft.eissn=2041-3076&rft_id=info:doi/10.1177/1464420721990049&rft_dat=%3Cproquest_cross%3E2539076699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539076699&rft_id=info:pmid/&rft_sage_id=10.1177_1464420721990049&rfr_iscdi=true