Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model
The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing enviro...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2021-06, Vol.235 (6), p.1430-1442 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1442 |
---|---|
container_issue | 6 |
container_start_page | 1430 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications |
container_volume | 235 |
creator | Darabi, Roya Azinpour, Erfan Fiorentin, Felipe K Abarca, Manuel J Cesar de Sá, Jose Dzugan, Jan |
description | The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing environment and microstructural anisotropies could adversely affect the quality of as-deposited parts. Among other factors, the shape, size, and distribution of the microvoids and porosities could, to some extent, have deteriorating effects on the mechanical properties of the additively manufactured components. In this work, the micromechanically motivated Gurson–Tvergaard–Needleman damage model is utilized and the performance of the model is evaluated by observing the damage accumulation in the loaded additively manufactured specimens. By relying to the laboratory-based material data and fractographic imagery from nonstandard tensile testing on fabricated samples in different building directions, numerical model predictions are found to be in a good agreement with the experimental observations. Furthermore, by resorting to the finite element software capabilities, the thermal analyses are carried out on the manufactured cube component and the influence of the process parameters on the temperature distribution is revealed. |
doi_str_mv | 10.1177/1464420721990049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2539076699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1464420721990049</sage_id><sourcerecordid>2539076699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-2f81153d83dcc7d515cb9c26c3828239c93a10d590204831ca403e6ccba77583</originalsourceid><addsrcrecordid>eNp1kcFq3TAQRUVJoS9p910KunYrWbZldRdCmgZCsnl7M5HGrw6y5Wrk0NdV_iH_lA_pl0TOKxQCXQnp3nsG3WHsoxSfpdT6i6yaqiqFLqUxQlTmDduUopKFEro5YptVLlb9HTsmuhNCSC30hj2d_5oxDiNOCTyHyXEbxnlJkIYwvbyA39NAPPQcnBvScI9-z0eYlh5sWiI6nnCiwSOnGe1Koq_8lAiJVuoa9MGCH36jK2wIfph2PELCl2lusWnN9vFA4wutevqB_GKJFKY_D498e49xBxBdvlwjOo95Pncwwg75GBz69-xtD57ww9_zhG2_nW_PvhdXNxeXZ6dXhVXCpKLsWylr5VrlrNWulrW9NbZsrGrLtlTGGgVSuNqI3F2rpIVKKGysvQWt61adsE8H7BzDzwUpdXdhibki6spamVx1Y0x2iYPLxkAUse_m3DDEfSdFty6re72sHCkOEcpf-gf9r_8Zwcma1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539076699</pqid></control><display><type>article</type><title>Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model</title><source>Access via SAGE</source><creator>Darabi, Roya ; Azinpour, Erfan ; Fiorentin, Felipe K ; Abarca, Manuel J ; Cesar de Sá, Jose ; Dzugan, Jan</creator><creatorcontrib>Darabi, Roya ; Azinpour, Erfan ; Fiorentin, Felipe K ; Abarca, Manuel J ; Cesar de Sá, Jose ; Dzugan, Jan</creatorcontrib><description>The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing environment and microstructural anisotropies could adversely affect the quality of as-deposited parts. Among other factors, the shape, size, and distribution of the microvoids and porosities could, to some extent, have deteriorating effects on the mechanical properties of the additively manufactured components. In this work, the micromechanically motivated Gurson–Tvergaard–Needleman damage model is utilized and the performance of the model is evaluated by observing the damage accumulation in the loaded additively manufactured specimens. By relying to the laboratory-based material data and fractographic imagery from nonstandard tensile testing on fabricated samples in different building directions, numerical model predictions are found to be in a good agreement with the experimental observations. Furthermore, by resorting to the finite element software capabilities, the thermal analyses are carried out on the manufactured cube component and the influence of the process parameters on the temperature distribution is revealed.</description><identifier>ISSN: 1464-4207</identifier><identifier>EISSN: 2041-3076</identifier><identifier>DOI: 10.1177/1464420721990049</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Additive manufacturing ; Cooling rate ; Damage accumulation ; Damage assessment ; Damage localization ; Ductile fracture ; Finite element method ; Mathematical models ; Mechanical properties ; Numerical models ; Numerical prediction ; Process parameters ; Stainless steels ; Temperature distribution ; Tensile tests ; Thermal analysis</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2021-06, Vol.235 (6), p.1430-1442</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-2f81153d83dcc7d515cb9c26c3828239c93a10d590204831ca403e6ccba77583</citedby><cites>FETCH-LOGICAL-c309t-2f81153d83dcc7d515cb9c26c3828239c93a10d590204831ca403e6ccba77583</cites><orcidid>0000-0002-0807-0156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1464420721990049$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1464420721990049$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21820,27925,27926,43622,43623</link.rule.ids></links><search><creatorcontrib>Darabi, Roya</creatorcontrib><creatorcontrib>Azinpour, Erfan</creatorcontrib><creatorcontrib>Fiorentin, Felipe K</creatorcontrib><creatorcontrib>Abarca, Manuel J</creatorcontrib><creatorcontrib>Cesar de Sá, Jose</creatorcontrib><creatorcontrib>Dzugan, Jan</creatorcontrib><title>Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model</title><title>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</title><description>The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing environment and microstructural anisotropies could adversely affect the quality of as-deposited parts. Among other factors, the shape, size, and distribution of the microvoids and porosities could, to some extent, have deteriorating effects on the mechanical properties of the additively manufactured components. In this work, the micromechanically motivated Gurson–Tvergaard–Needleman damage model is utilized and the performance of the model is evaluated by observing the damage accumulation in the loaded additively manufactured specimens. By relying to the laboratory-based material data and fractographic imagery from nonstandard tensile testing on fabricated samples in different building directions, numerical model predictions are found to be in a good agreement with the experimental observations. Furthermore, by resorting to the finite element software capabilities, the thermal analyses are carried out on the manufactured cube component and the influence of the process parameters on the temperature distribution is revealed.</description><subject>Additive manufacturing</subject><subject>Cooling rate</subject><subject>Damage accumulation</subject><subject>Damage assessment</subject><subject>Damage localization</subject><subject>Ductile fracture</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Numerical models</subject><subject>Numerical prediction</subject><subject>Process parameters</subject><subject>Stainless steels</subject><subject>Temperature distribution</subject><subject>Tensile tests</subject><subject>Thermal analysis</subject><issn>1464-4207</issn><issn>2041-3076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kcFq3TAQRUVJoS9p910KunYrWbZldRdCmgZCsnl7M5HGrw6y5Wrk0NdV_iH_lA_pl0TOKxQCXQnp3nsG3WHsoxSfpdT6i6yaqiqFLqUxQlTmDduUopKFEro5YptVLlb9HTsmuhNCSC30hj2d_5oxDiNOCTyHyXEbxnlJkIYwvbyA39NAPPQcnBvScI9-z0eYlh5sWiI6nnCiwSOnGe1Koq_8lAiJVuoa9MGCH36jK2wIfph2PELCl2lusWnN9vFA4wutevqB_GKJFKY_D498e49xBxBdvlwjOo95Pncwwg75GBz69-xtD57ww9_zhG2_nW_PvhdXNxeXZ6dXhVXCpKLsWylr5VrlrNWulrW9NbZsrGrLtlTGGgVSuNqI3F2rpIVKKGysvQWt61adsE8H7BzDzwUpdXdhibki6spamVx1Y0x2iYPLxkAUse_m3DDEfSdFty6re72sHCkOEcpf-gf9r_8Zwcma1A</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Darabi, Roya</creator><creator>Azinpour, Erfan</creator><creator>Fiorentin, Felipe K</creator><creator>Abarca, Manuel J</creator><creator>Cesar de Sá, Jose</creator><creator>Dzugan, Jan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0807-0156</orcidid></search><sort><creationdate>202106</creationdate><title>Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model</title><author>Darabi, Roya ; Azinpour, Erfan ; Fiorentin, Felipe K ; Abarca, Manuel J ; Cesar de Sá, Jose ; Dzugan, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-2f81153d83dcc7d515cb9c26c3828239c93a10d590204831ca403e6ccba77583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Cooling rate</topic><topic>Damage accumulation</topic><topic>Damage assessment</topic><topic>Damage localization</topic><topic>Ductile fracture</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Numerical models</topic><topic>Numerical prediction</topic><topic>Process parameters</topic><topic>Stainless steels</topic><topic>Temperature distribution</topic><topic>Tensile tests</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darabi, Roya</creatorcontrib><creatorcontrib>Azinpour, Erfan</creatorcontrib><creatorcontrib>Fiorentin, Felipe K</creatorcontrib><creatorcontrib>Abarca, Manuel J</creatorcontrib><creatorcontrib>Cesar de Sá, Jose</creatorcontrib><creatorcontrib>Dzugan, Jan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darabi, Roya</au><au>Azinpour, Erfan</au><au>Fiorentin, Felipe K</au><au>Abarca, Manuel J</au><au>Cesar de Sá, Jose</au><au>Dzugan, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle><date>2021-06</date><risdate>2021</risdate><volume>235</volume><issue>6</issue><spage>1430</spage><epage>1442</epage><pages>1430-1442</pages><issn>1464-4207</issn><eissn>2041-3076</eissn><abstract>The present contribution addresses the micromechanical and thermal analysis of directed energy deposition-manufactured, stainless steel 316L components by utilizing experimental and numerical analyses. It has been established that a combination of controlling process parameters, manufacturing environment and microstructural anisotropies could adversely affect the quality of as-deposited parts. Among other factors, the shape, size, and distribution of the microvoids and porosities could, to some extent, have deteriorating effects on the mechanical properties of the additively manufactured components. In this work, the micromechanically motivated Gurson–Tvergaard–Needleman damage model is utilized and the performance of the model is evaluated by observing the damage accumulation in the loaded additively manufactured specimens. By relying to the laboratory-based material data and fractographic imagery from nonstandard tensile testing on fabricated samples in different building directions, numerical model predictions are found to be in a good agreement with the experimental observations. Furthermore, by resorting to the finite element software capabilities, the thermal analyses are carried out on the manufactured cube component and the influence of the process parameters on the temperature distribution is revealed.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1464420721990049</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0807-0156</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4207 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2021-06, Vol.235 (6), p.1430-1442 |
issn | 1464-4207 2041-3076 |
language | eng |
recordid | cdi_proquest_journals_2539076699 |
source | Access via SAGE |
subjects | Additive manufacturing Cooling rate Damage accumulation Damage assessment Damage localization Ductile fracture Finite element method Mathematical models Mechanical properties Numerical models Numerical prediction Process parameters Stainless steels Temperature distribution Tensile tests Thermal analysis |
title | Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20analysis%20of%20additively%20manufactured%20tensile%20specimens:%20Assessment%20of%20localized-cooling%20rate%20and%20ductile%20fracture%20using%20the%20Gurson%E2%80%93%20Tvergaard%E2%80%93Needleman%20damage%20model&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20L,%20Journal%20of%20materials,%20design%20and%20applications&rft.au=Darabi,%20Roya&rft.date=2021-06&rft.volume=235&rft.issue=6&rft.spage=1430&rft.epage=1442&rft.pages=1430-1442&rft.issn=1464-4207&rft.eissn=2041-3076&rft_id=info:doi/10.1177/1464420721990049&rft_dat=%3Cproquest_cross%3E2539076699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539076699&rft_id=info:pmid/&rft_sage_id=10.1177_1464420721990049&rfr_iscdi=true |