The Sample Complexity of Up-to-ε Multi-dimensional Revenue Maximization

We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of additive bidders whose values for heterogeneous items are drawn independently. For any such instance and any , we show that it is po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2021-06, Vol.68 (3), p.1-28
Hauptverfasser: Gonczarowski, Yannai A., Weinberg, S. Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 3
container_start_page 1
container_title Journal of the ACM
container_volume 68
creator Gonczarowski, Yannai A.
Weinberg, S. Matthew
description We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of additive bidders whose values for heterogeneous items are drawn independently. For any such instance and any , we show that it is possible to learn an -Bayesian Incentive Compatible auction whose expected revenue is within of the optimal -BIC auction from only polynomially many samples. Our fully nonparametric approach is based on ideas that hold quite generally and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that are not necessarily even subadditive , and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well understood, our corollary for this case extends slightly the state of the art.
doi_str_mv 10.1145/3439722
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2538399634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2538399634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-fc7dcb1719c46926ad8e20388ae2c3f36ea2cbd2fe3a9d4ead93b0d6945af7b93</originalsourceid><addsrcrecordid>eNotkMtKw0AUhgdRMFbxFQZcuBqdayazlKJWaBG0BXdhMhecknRiJpHW9_I1fCZT2tXHOfz85_ABcE3wHSFc3DPOlKT0BGRECIkkEx-nIMMYcyQ4IefgIqX1OGKKZQZmy08H33XT1g5O4x7b0O9g9HDVoj6iv1-4GOo-IBsat0khbnQN39y32wwOLvQ2NOFH9-P6Epx5XSd3deQErJ4el9MZmr8-v0wf5shQwXrkjbSmIpIow3NFc20LRzErCu2oYZ7lTlNTWeod08pyp61iFba54kJ7WSk2ATeH3raLX4NLfbmOQzd-lcrxQMGUykcDE3B7SJkuptQ5X7ZdaHS3Kwku95rKoyb2DzZGWnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538399634</pqid></control><display><type>article</type><title>The Sample Complexity of Up-to-ε Multi-dimensional Revenue Maximization</title><source>ACM Digital Library Complete</source><creator>Gonczarowski, Yannai A. ; Weinberg, S. Matthew</creator><creatorcontrib>Gonczarowski, Yannai A. ; Weinberg, S. Matthew</creatorcontrib><description>We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of additive bidders whose values for heterogeneous items are drawn independently. For any such instance and any , we show that it is possible to learn an -Bayesian Incentive Compatible auction whose expected revenue is within of the optimal -BIC auction from only polynomially many samples. Our fully nonparametric approach is based on ideas that hold quite generally and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that are not necessarily even subadditive , and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well understood, our corollary for this case extends slightly the state of the art.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/3439722</identifier><language>eng</language><publisher>New York: Association for Computing Machinery</publisher><subject>Bids ; Complexity ; Maximization ; Optimization ; Parameters ; Revenue</subject><ispartof>Journal of the ACM, 2021-06, Vol.68 (3), p.1-28</ispartof><rights>Copyright Association for Computing Machinery May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-fc7dcb1719c46926ad8e20388ae2c3f36ea2cbd2fe3a9d4ead93b0d6945af7b93</citedby><cites>FETCH-LOGICAL-c253t-fc7dcb1719c46926ad8e20388ae2c3f36ea2cbd2fe3a9d4ead93b0d6945af7b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gonczarowski, Yannai A.</creatorcontrib><creatorcontrib>Weinberg, S. Matthew</creatorcontrib><title>The Sample Complexity of Up-to-ε Multi-dimensional Revenue Maximization</title><title>Journal of the ACM</title><description>We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of additive bidders whose values for heterogeneous items are drawn independently. For any such instance and any , we show that it is possible to learn an -Bayesian Incentive Compatible auction whose expected revenue is within of the optimal -BIC auction from only polynomially many samples. Our fully nonparametric approach is based on ideas that hold quite generally and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that are not necessarily even subadditive , and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well understood, our corollary for this case extends slightly the state of the art.</description><subject>Bids</subject><subject>Complexity</subject><subject>Maximization</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Revenue</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkMtKw0AUhgdRMFbxFQZcuBqdayazlKJWaBG0BXdhMhecknRiJpHW9_I1fCZT2tXHOfz85_ABcE3wHSFc3DPOlKT0BGRECIkkEx-nIMMYcyQ4IefgIqX1OGKKZQZmy08H33XT1g5O4x7b0O9g9HDVoj6iv1-4GOo-IBsat0khbnQN39y32wwOLvQ2NOFH9-P6Epx5XSd3deQErJ4el9MZmr8-v0wf5shQwXrkjbSmIpIow3NFc20LRzErCu2oYZ7lTlNTWeod08pyp61iFba54kJ7WSk2ATeH3raLX4NLfbmOQzd-lcrxQMGUykcDE3B7SJkuptQ5X7ZdaHS3Kwku95rKoyb2DzZGWnU</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Gonczarowski, Yannai A.</creator><creator>Weinberg, S. Matthew</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210601</creationdate><title>The Sample Complexity of Up-to-ε Multi-dimensional Revenue Maximization</title><author>Gonczarowski, Yannai A. ; Weinberg, S. Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-fc7dcb1719c46926ad8e20388ae2c3f36ea2cbd2fe3a9d4ead93b0d6945af7b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bids</topic><topic>Complexity</topic><topic>Maximization</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Revenue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonczarowski, Yannai A.</creatorcontrib><creatorcontrib>Weinberg, S. Matthew</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonczarowski, Yannai A.</au><au>Weinberg, S. Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Sample Complexity of Up-to-ε Multi-dimensional Revenue Maximization</atitle><jtitle>Journal of the ACM</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>3</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of additive bidders whose values for heterogeneous items are drawn independently. For any such instance and any , we show that it is possible to learn an -Bayesian Incentive Compatible auction whose expected revenue is within of the optimal -BIC auction from only polynomially many samples. Our fully nonparametric approach is based on ideas that hold quite generally and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that are not necessarily even subadditive , and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well understood, our corollary for this case extends slightly the state of the art.</abstract><cop>New York</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3439722</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2021-06, Vol.68 (3), p.1-28
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_journals_2538399634
source ACM Digital Library Complete
subjects Bids
Complexity
Maximization
Optimization
Parameters
Revenue
title The Sample Complexity of Up-to-ε Multi-dimensional Revenue Maximization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Sample%20Complexity%20of%20Up-to-%CE%B5%20Multi-dimensional%20Revenue%20Maximization&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Gonczarowski,%20Yannai%20A.&rft.date=2021-06-01&rft.volume=68&rft.issue=3&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/3439722&rft_dat=%3Cproquest_cross%3E2538399634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2538399634&rft_id=info:pmid/&rfr_iscdi=true