Automated segmentation of substantia nigra and red nucleus using quantitative susceptibility mapping images: Application to Parkinson's disease

•A new algorithm for substantia nigra and red nucleus segmentation from QSM images.•Contrast enhancement technique using local and global mean.•High correlation of QSM values extracted from manual and proposed segmentations.•Increased iron content observed in substantia nigra of Parkinsonʼs disease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2021-05, Vol.91, p.107091, Article 107091
Hauptverfasser: Basukala, Dibash, Mukundan, Ramakrishnan, Lim, Anthony, Hurrell, Michael A, Keenan, Ross J, Dalrymple-Alford, John C, Anderson, Tim J, Myall, Daniel J, Melzer, Tracy R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107091
container_title Computers & electrical engineering
container_volume 91
creator Basukala, Dibash
Mukundan, Ramakrishnan
Lim, Anthony
Hurrell, Michael A
Keenan, Ross J
Dalrymple-Alford, John C
Anderson, Tim J
Myall, Daniel J
Melzer, Tracy R
description •A new algorithm for substantia nigra and red nucleus segmentation from QSM images.•Contrast enhancement technique using local and global mean.•High correlation of QSM values extracted from manual and proposed segmentations.•Increased iron content observed in substantia nigra of Parkinsonʼs disease patients.•Substantia nigra QSM values showed association with cognitive and motor impairments. Accurate segmentation of substantia nigra (SN) and red nucleus (RN) is challenging, yet important for understanding health problems like Parkinson's disease (PD). This paper proposes an algorithm to segment SN and RN from quantitative susceptibility mapping (QSM) MRI and use the results to investigate PD. Algorithm-derived segments (based on level set and watershed transform) are compared to expert manually-derived segmentations in 40 participants. Using Bayesian regression models, we compare QSM values between PD and control groups, and investigate relationships with global cognitive ability and motor severity in PD. The proposed algorithm produces high quality segmentations, validated against expert manual segmentation. We show moderate evidence of increased QSM values in SN in PD relative to controls, with moderate evidence for association between QSM, global cognitive ability, and motor impairment in the SN in PD. We suggest an improved midbrain segmentation algorithm may be useful for monitoring iron-related disease severity in Parkinson's. [Display omitted]
doi_str_mv 10.1016/j.compeleceng.2021.107091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2538399087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790621001002</els_id><sourcerecordid>2538399087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6deb0f92882b51c632f35e9a9e88422409dca340074fee37af41529f6f61ddc13</originalsourceid><addsrcrecordid>eNqNkE-LFDEQxYMoOK5-h4gHTz2bpP_G2zC4KiysBz2HTFJpMnYnvan0wn4Kv7Jp2oNHT0UVv_eK9wh5z9mRM97dXo8mzgtMYCCMR8EEL_eeSf6CHPjQy4r1bfuSHBhr2qqXrHtN3iBeWdk7PhzI79Oa46wzWIowzhCyzj4GGh3F9YJZh-w1DX5MmupgaSpgWM0EK9IVfRjp47oxm-wJigYNLNlf_OTzM531smyMn_UI-ImelmXyZv-QI_2u0y8fMIaPSK1H0AhvySunJ4R3f-cN-Xn3-cf5a3X_8OXb-XRfmbqRueosXJiTYhjEpeWmq4WrW5BawjA0QjRMWqPrhrG-cQB1r13DWyFd5zpureH1Dfmw-y4pPq6AWV3jmkJ5qURbD7WUbOgLJXfKpIiYwKkllSzpWXGmtv7VVf3Tv9r6V3v_RXvetVBiPHlICo2HYMD6BCYrG_1_uPwBnu-YRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538399087</pqid></control><display><type>article</type><title>Automated segmentation of substantia nigra and red nucleus using quantitative susceptibility mapping images: Application to Parkinson's disease</title><source>Elsevier ScienceDirect Journals</source><creator>Basukala, Dibash ; Mukundan, Ramakrishnan ; Lim, Anthony ; Hurrell, Michael A ; Keenan, Ross J ; Dalrymple-Alford, John C ; Anderson, Tim J ; Myall, Daniel J ; Melzer, Tracy R</creator><creatorcontrib>Basukala, Dibash ; Mukundan, Ramakrishnan ; Lim, Anthony ; Hurrell, Michael A ; Keenan, Ross J ; Dalrymple-Alford, John C ; Anderson, Tim J ; Myall, Daniel J ; Melzer, Tracy R</creatorcontrib><description>•A new algorithm for substantia nigra and red nucleus segmentation from QSM images.•Contrast enhancement technique using local and global mean.•High correlation of QSM values extracted from manual and proposed segmentations.•Increased iron content observed in substantia nigra of Parkinsonʼs disease patients.•Substantia nigra QSM values showed association with cognitive and motor impairments. Accurate segmentation of substantia nigra (SN) and red nucleus (RN) is challenging, yet important for understanding health problems like Parkinson's disease (PD). This paper proposes an algorithm to segment SN and RN from quantitative susceptibility mapping (QSM) MRI and use the results to investigate PD. Algorithm-derived segments (based on level set and watershed transform) are compared to expert manually-derived segmentations in 40 participants. Using Bayesian regression models, we compare QSM values between PD and control groups, and investigate relationships with global cognitive ability and motor severity in PD. The proposed algorithm produces high quality segmentations, validated against expert manual segmentation. We show moderate evidence of increased QSM values in SN in PD relative to controls, with moderate evidence for association between QSM, global cognitive ability, and motor impairment in the SN in PD. We suggest an improved midbrain segmentation algorithm may be useful for monitoring iron-related disease severity in Parkinson's. [Display omitted]</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2021.107091</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Cognitive ability ; Image segmentation ; Iron deposition ; Mapping ; Parkinson's disease ; Quantitative susceptibility mapping ; Red nucleus ; Regression models ; Segmentation ; Substantia nigra</subject><ispartof>Computers &amp; electrical engineering, 2021-05, Vol.91, p.107091, Article 107091</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6deb0f92882b51c632f35e9a9e88422409dca340074fee37af41529f6f61ddc13</citedby><cites>FETCH-LOGICAL-c349t-6deb0f92882b51c632f35e9a9e88422409dca340074fee37af41529f6f61ddc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045790621001002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Basukala, Dibash</creatorcontrib><creatorcontrib>Mukundan, Ramakrishnan</creatorcontrib><creatorcontrib>Lim, Anthony</creatorcontrib><creatorcontrib>Hurrell, Michael A</creatorcontrib><creatorcontrib>Keenan, Ross J</creatorcontrib><creatorcontrib>Dalrymple-Alford, John C</creatorcontrib><creatorcontrib>Anderson, Tim J</creatorcontrib><creatorcontrib>Myall, Daniel J</creatorcontrib><creatorcontrib>Melzer, Tracy R</creatorcontrib><title>Automated segmentation of substantia nigra and red nucleus using quantitative susceptibility mapping images: Application to Parkinson's disease</title><title>Computers &amp; electrical engineering</title><description>•A new algorithm for substantia nigra and red nucleus segmentation from QSM images.•Contrast enhancement technique using local and global mean.•High correlation of QSM values extracted from manual and proposed segmentations.•Increased iron content observed in substantia nigra of Parkinsonʼs disease patients.•Substantia nigra QSM values showed association with cognitive and motor impairments. Accurate segmentation of substantia nigra (SN) and red nucleus (RN) is challenging, yet important for understanding health problems like Parkinson's disease (PD). This paper proposes an algorithm to segment SN and RN from quantitative susceptibility mapping (QSM) MRI and use the results to investigate PD. Algorithm-derived segments (based on level set and watershed transform) are compared to expert manually-derived segmentations in 40 participants. Using Bayesian regression models, we compare QSM values between PD and control groups, and investigate relationships with global cognitive ability and motor severity in PD. The proposed algorithm produces high quality segmentations, validated against expert manual segmentation. We show moderate evidence of increased QSM values in SN in PD relative to controls, with moderate evidence for association between QSM, global cognitive ability, and motor impairment in the SN in PD. We suggest an improved midbrain segmentation algorithm may be useful for monitoring iron-related disease severity in Parkinson's. [Display omitted]</description><subject>Algorithms</subject><subject>Cognitive ability</subject><subject>Image segmentation</subject><subject>Iron deposition</subject><subject>Mapping</subject><subject>Parkinson's disease</subject><subject>Quantitative susceptibility mapping</subject><subject>Red nucleus</subject><subject>Regression models</subject><subject>Segmentation</subject><subject>Substantia nigra</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE-LFDEQxYMoOK5-h4gHTz2bpP_G2zC4KiysBz2HTFJpMnYnvan0wn4Kv7Jp2oNHT0UVv_eK9wh5z9mRM97dXo8mzgtMYCCMR8EEL_eeSf6CHPjQy4r1bfuSHBhr2qqXrHtN3iBeWdk7PhzI79Oa46wzWIowzhCyzj4GGh3F9YJZh-w1DX5MmupgaSpgWM0EK9IVfRjp47oxm-wJigYNLNlf_OTzM531smyMn_UI-ImelmXyZv-QI_2u0y8fMIaPSK1H0AhvySunJ4R3f-cN-Xn3-cf5a3X_8OXb-XRfmbqRueosXJiTYhjEpeWmq4WrW5BawjA0QjRMWqPrhrG-cQB1r13DWyFd5zpureH1Dfmw-y4pPq6AWV3jmkJ5qURbD7WUbOgLJXfKpIiYwKkllSzpWXGmtv7VVf3Tv9r6V3v_RXvetVBiPHlICo2HYMD6BCYrG_1_uPwBnu-YRw</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Basukala, Dibash</creator><creator>Mukundan, Ramakrishnan</creator><creator>Lim, Anthony</creator><creator>Hurrell, Michael A</creator><creator>Keenan, Ross J</creator><creator>Dalrymple-Alford, John C</creator><creator>Anderson, Tim J</creator><creator>Myall, Daniel J</creator><creator>Melzer, Tracy R</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202105</creationdate><title>Automated segmentation of substantia nigra and red nucleus using quantitative susceptibility mapping images: Application to Parkinson's disease</title><author>Basukala, Dibash ; Mukundan, Ramakrishnan ; Lim, Anthony ; Hurrell, Michael A ; Keenan, Ross J ; Dalrymple-Alford, John C ; Anderson, Tim J ; Myall, Daniel J ; Melzer, Tracy R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6deb0f92882b51c632f35e9a9e88422409dca340074fee37af41529f6f61ddc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cognitive ability</topic><topic>Image segmentation</topic><topic>Iron deposition</topic><topic>Mapping</topic><topic>Parkinson's disease</topic><topic>Quantitative susceptibility mapping</topic><topic>Red nucleus</topic><topic>Regression models</topic><topic>Segmentation</topic><topic>Substantia nigra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basukala, Dibash</creatorcontrib><creatorcontrib>Mukundan, Ramakrishnan</creatorcontrib><creatorcontrib>Lim, Anthony</creatorcontrib><creatorcontrib>Hurrell, Michael A</creatorcontrib><creatorcontrib>Keenan, Ross J</creatorcontrib><creatorcontrib>Dalrymple-Alford, John C</creatorcontrib><creatorcontrib>Anderson, Tim J</creatorcontrib><creatorcontrib>Myall, Daniel J</creatorcontrib><creatorcontrib>Melzer, Tracy R</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basukala, Dibash</au><au>Mukundan, Ramakrishnan</au><au>Lim, Anthony</au><au>Hurrell, Michael A</au><au>Keenan, Ross J</au><au>Dalrymple-Alford, John C</au><au>Anderson, Tim J</au><au>Myall, Daniel J</au><au>Melzer, Tracy R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated segmentation of substantia nigra and red nucleus using quantitative susceptibility mapping images: Application to Parkinson's disease</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2021-05</date><risdate>2021</risdate><volume>91</volume><spage>107091</spage><pages>107091-</pages><artnum>107091</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>•A new algorithm for substantia nigra and red nucleus segmentation from QSM images.•Contrast enhancement technique using local and global mean.•High correlation of QSM values extracted from manual and proposed segmentations.•Increased iron content observed in substantia nigra of Parkinsonʼs disease patients.•Substantia nigra QSM values showed association with cognitive and motor impairments. Accurate segmentation of substantia nigra (SN) and red nucleus (RN) is challenging, yet important for understanding health problems like Parkinson's disease (PD). This paper proposes an algorithm to segment SN and RN from quantitative susceptibility mapping (QSM) MRI and use the results to investigate PD. Algorithm-derived segments (based on level set and watershed transform) are compared to expert manually-derived segmentations in 40 participants. Using Bayesian regression models, we compare QSM values between PD and control groups, and investigate relationships with global cognitive ability and motor severity in PD. The proposed algorithm produces high quality segmentations, validated against expert manual segmentation. We show moderate evidence of increased QSM values in SN in PD relative to controls, with moderate evidence for association between QSM, global cognitive ability, and motor impairment in the SN in PD. We suggest an improved midbrain segmentation algorithm may be useful for monitoring iron-related disease severity in Parkinson's. [Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2021.107091</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2021-05, Vol.91, p.107091, Article 107091
issn 0045-7906
1879-0755
language eng
recordid cdi_proquest_journals_2538399087
source Elsevier ScienceDirect Journals
subjects Algorithms
Cognitive ability
Image segmentation
Iron deposition
Mapping
Parkinson's disease
Quantitative susceptibility mapping
Red nucleus
Regression models
Segmentation
Substantia nigra
title Automated segmentation of substantia nigra and red nucleus using quantitative susceptibility mapping images: Application to Parkinson's disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20segmentation%20of%20substantia%20nigra%20and%20red%20nucleus%20using%20quantitative%20susceptibility%20mapping%20images:%20Application%20to%20Parkinson's%20disease&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Basukala,%20Dibash&rft.date=2021-05&rft.volume=91&rft.spage=107091&rft.pages=107091-&rft.artnum=107091&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2021.107091&rft_dat=%3Cproquest_cross%3E2538399087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2538399087&rft_id=info:pmid/&rft_els_id=S0045790621001002&rfr_iscdi=true