Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution

Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (22), p.13271-13278
Hauptverfasser: Ling, Xintong, Du, Feng, Zhang, Yintong, Shen, Yan, Gao, Wa, Zhou, Bo, Wang, Zhiyuan, Li, Guoling, Li, Tao, Shen, Qing, Xiong, Yujie, Wang, Xiaoyong, Zhou, Yong, Zou, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13278
container_issue 22
container_start_page 13271
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Ling, Xintong
Du, Feng
Zhang, Yintong
Shen, Yan
Gao, Wa
Zhou, Bo
Wang, Zhiyuan
Li, Guoling
Li, Tao
Shen, Qing
Xiong, Yujie
Wang, Xiaoyong
Zhou, Yong
Zou, Zhigang
description Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared a Fe2Co-MIL-88B MOF on nickel foam (Fe2Co MOF/NF) through a solvothermal process. Fe0.67Co0.33OOH was in situ formed on the surface of an Fe2Co MOF during the OER, which is confirmed as the real active species. The electrocatalytic performance is significantly improved due to the electron transfer between Fe and Co, which is confirmed to be related to the positive coupling effect between Co and Fe and the change of the electronic structure caused by the replacement of Co by Fe metal ions in the MOF. Meanwhile, density functional theory calculations reveal that the OER on Fe0.67Co0.33OOH follows the Mars–van-Krevelen mechanism. The electrochemical test results show the superior OER activity of the catalyst with a low overpotential of 224 mV at a current density of 10 mA cm−2, a low Tafel slope of 45.3 mV dec−1, and excellent stability for 50 hours in 1 M KOH. This study provides a simple and effective strategy for the rational design and structural evolution of MOF-derived materials to achieve inexpensive and effective electrocatalysis.
doi_str_mv 10.1039/d1ta02159a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2537943948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537943948</sourcerecordid><originalsourceid>FETCH-LOGICAL-g150t-97a2e3245b7d8df5235346b7a22f5b61d57086767eae5bcd2f48aa9a4a285dae3</originalsourceid><addsrcrecordid>eNo9jctOwzAURC0EElXphi-wxDrg-BHbS6gIIBV1A-vqJr4urtIYHKdq_55IRcxmRmdxhpDbkt2XTNgHV2ZgvFQWLsiMM8UKLW11-b-NuSaLYdixKYaxytoZCU9hjxm6LrQ0Hk9fJ5fiMTikoadDyCN1mMIBHfUp7in0tEa-jMX7uqY-JorehzZgnyl22OYUW5hkp3y2bbGneIjdmEPsb8iVh27AxV_PyWf9_LF8LVbrl7fl46rYlorlwmrgKLhUjXbGecWFErJqJsq9aqrSKc1MpSuNgKppHffSAFiQwI1ygGJO7s7e7xR_RhzyZhfH1E-XG66EtlJYacQvhWVa_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537943948</pqid></control><display><type>article</type><title>Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ling, Xintong ; Du, Feng ; Zhang, Yintong ; Shen, Yan ; Gao, Wa ; Zhou, Bo ; Wang, Zhiyuan ; Li, Guoling ; Li, Tao ; Shen, Qing ; Xiong, Yujie ; Wang, Xiaoyong ; Zhou, Yong ; Zou, Zhigang</creator><creatorcontrib>Ling, Xintong ; Du, Feng ; Zhang, Yintong ; Shen, Yan ; Gao, Wa ; Zhou, Bo ; Wang, Zhiyuan ; Li, Guoling ; Li, Tao ; Shen, Qing ; Xiong, Yujie ; Wang, Xiaoyong ; Zhou, Yong ; Zou, Zhigang</creatorcontrib><description>Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared a Fe2Co-MIL-88B MOF on nickel foam (Fe2Co MOF/NF) through a solvothermal process. Fe0.67Co0.33OOH was in situ formed on the surface of an Fe2Co MOF during the OER, which is confirmed as the real active species. The electrocatalytic performance is significantly improved due to the electron transfer between Fe and Co, which is confirmed to be related to the positive coupling effect between Co and Fe and the change of the electronic structure caused by the replacement of Co by Fe metal ions in the MOF. Meanwhile, density functional theory calculations reveal that the OER on Fe0.67Co0.33OOH follows the Mars–van-Krevelen mechanism. The electrochemical test results show the superior OER activity of the catalyst with a low overpotential of 224 mV at a current density of 10 mA cm−2, a low Tafel slope of 45.3 mV dec−1, and excellent stability for 50 hours in 1 M KOH. This study provides a simple and effective strategy for the rational design and structural evolution of MOF-derived materials to achieve inexpensive and effective electrocatalysis.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta02159a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bimetals ; Catalysts ; Chemical evolution ; Cobalt ; Density functional theory ; Electrochemistry ; Electron transfer ; Electronic structure ; Iron ; Metal foams ; Metal ions ; Metal-organic frameworks ; Nickel ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (22), p.13271-13278</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ling, Xintong</creatorcontrib><creatorcontrib>Du, Feng</creatorcontrib><creatorcontrib>Zhang, Yintong</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Gao, Wa</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Li, Guoling</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Shen, Qing</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><title>Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared a Fe2Co-MIL-88B MOF on nickel foam (Fe2Co MOF/NF) through a solvothermal process. Fe0.67Co0.33OOH was in situ formed on the surface of an Fe2Co MOF during the OER, which is confirmed as the real active species. The electrocatalytic performance is significantly improved due to the electron transfer between Fe and Co, which is confirmed to be related to the positive coupling effect between Co and Fe and the change of the electronic structure caused by the replacement of Co by Fe metal ions in the MOF. Meanwhile, density functional theory calculations reveal that the OER on Fe0.67Co0.33OOH follows the Mars–van-Krevelen mechanism. The electrochemical test results show the superior OER activity of the catalyst with a low overpotential of 224 mV at a current density of 10 mA cm−2, a low Tafel slope of 45.3 mV dec−1, and excellent stability for 50 hours in 1 M KOH. This study provides a simple and effective strategy for the rational design and structural evolution of MOF-derived materials to achieve inexpensive and effective electrocatalysis.</description><subject>Bimetals</subject><subject>Catalysts</subject><subject>Chemical evolution</subject><subject>Cobalt</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Iron</subject><subject>Metal foams</subject><subject>Metal ions</subject><subject>Metal-organic frameworks</subject><subject>Nickel</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jctOwzAURC0EElXphi-wxDrg-BHbS6gIIBV1A-vqJr4urtIYHKdq_55IRcxmRmdxhpDbkt2XTNgHV2ZgvFQWLsiMM8UKLW11-b-NuSaLYdixKYaxytoZCU9hjxm6LrQ0Hk9fJ5fiMTikoadDyCN1mMIBHfUp7in0tEa-jMX7uqY-JorehzZgnyl22OYUW5hkp3y2bbGneIjdmEPsb8iVh27AxV_PyWf9_LF8LVbrl7fl46rYlorlwmrgKLhUjXbGecWFErJqJsq9aqrSKc1MpSuNgKppHffSAFiQwI1ygGJO7s7e7xR_RhzyZhfH1E-XG66EtlJYacQvhWVa_Q</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ling, Xintong</creator><creator>Du, Feng</creator><creator>Zhang, Yintong</creator><creator>Shen, Yan</creator><creator>Gao, Wa</creator><creator>Zhou, Bo</creator><creator>Wang, Zhiyuan</creator><creator>Li, Guoling</creator><creator>Li, Tao</creator><creator>Shen, Qing</creator><creator>Xiong, Yujie</creator><creator>Wang, Xiaoyong</creator><creator>Zhou, Yong</creator><creator>Zou, Zhigang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210101</creationdate><title>Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution</title><author>Ling, Xintong ; Du, Feng ; Zhang, Yintong ; Shen, Yan ; Gao, Wa ; Zhou, Bo ; Wang, Zhiyuan ; Li, Guoling ; Li, Tao ; Shen, Qing ; Xiong, Yujie ; Wang, Xiaoyong ; Zhou, Yong ; Zou, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g150t-97a2e3245b7d8df5235346b7a22f5b61d57086767eae5bcd2f48aa9a4a285dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bimetals</topic><topic>Catalysts</topic><topic>Chemical evolution</topic><topic>Cobalt</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Iron</topic><topic>Metal foams</topic><topic>Metal ions</topic><topic>Metal-organic frameworks</topic><topic>Nickel</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Xintong</creatorcontrib><creatorcontrib>Du, Feng</creatorcontrib><creatorcontrib>Zhang, Yintong</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Gao, Wa</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Li, Guoling</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Shen, Qing</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Xintong</au><au>Du, Feng</au><au>Zhang, Yintong</au><au>Shen, Yan</au><au>Gao, Wa</au><au>Zhou, Bo</au><au>Wang, Zhiyuan</au><au>Li, Guoling</au><au>Li, Tao</au><au>Shen, Qing</au><au>Xiong, Yujie</au><au>Wang, Xiaoyong</au><au>Zhou, Yong</au><au>Zou, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>22</issue><spage>13271</spage><epage>13278</epage><pages>13271-13278</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared a Fe2Co-MIL-88B MOF on nickel foam (Fe2Co MOF/NF) through a solvothermal process. Fe0.67Co0.33OOH was in situ formed on the surface of an Fe2Co MOF during the OER, which is confirmed as the real active species. The electrocatalytic performance is significantly improved due to the electron transfer between Fe and Co, which is confirmed to be related to the positive coupling effect between Co and Fe and the change of the electronic structure caused by the replacement of Co by Fe metal ions in the MOF. Meanwhile, density functional theory calculations reveal that the OER on Fe0.67Co0.33OOH follows the Mars–van-Krevelen mechanism. The electrochemical test results show the superior OER activity of the catalyst with a low overpotential of 224 mV at a current density of 10 mA cm−2, a low Tafel slope of 45.3 mV dec−1, and excellent stability for 50 hours in 1 M KOH. This study provides a simple and effective strategy for the rational design and structural evolution of MOF-derived materials to achieve inexpensive and effective electrocatalysis.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta02159a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (22), p.13271-13278
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2537943948
source Royal Society Of Chemistry Journals 2008-
subjects Bimetals
Catalysts
Chemical evolution
Cobalt
Density functional theory
Electrochemistry
Electron transfer
Electronic structure
Iron
Metal foams
Metal ions
Metal-organic frameworks
Nickel
Water splitting
title Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimetallic%20oxyhydroxide%20in%20situ%20derived%20from%20an%20Fe2Co-MOF%20for%20efficient%20electrocatalytic%20oxygen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ling,%20Xintong&rft.date=2021-01-01&rft.volume=9&rft.issue=22&rft.spage=13271&rft.epage=13278&rft.pages=13271-13278&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta02159a&rft_dat=%3Cproquest%3E2537943948%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537943948&rft_id=info:pmid/&rfr_iscdi=true