Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution
Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (22), p.13271-13278 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13278 |
---|---|
container_issue | 22 |
container_start_page | 13271 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Ling, Xintong Du, Feng Zhang, Yintong Shen, Yan Gao, Wa Zhou, Bo Wang, Zhiyuan Li, Guoling Li, Tao Shen, Qing Xiong, Yujie Wang, Xiaoyong Zhou, Yong Zou, Zhigang |
description | Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared a Fe2Co-MIL-88B MOF on nickel foam (Fe2Co MOF/NF) through a solvothermal process. Fe0.67Co0.33OOH was in situ formed on the surface of an Fe2Co MOF during the OER, which is confirmed as the real active species. The electrocatalytic performance is significantly improved due to the electron transfer between Fe and Co, which is confirmed to be related to the positive coupling effect between Co and Fe and the change of the electronic structure caused by the replacement of Co by Fe metal ions in the MOF. Meanwhile, density functional theory calculations reveal that the OER on Fe0.67Co0.33OOH follows the Mars–van-Krevelen mechanism. The electrochemical test results show the superior OER activity of the catalyst with a low overpotential of 224 mV at a current density of 10 mA cm−2, a low Tafel slope of 45.3 mV dec−1, and excellent stability for 50 hours in 1 M KOH. This study provides a simple and effective strategy for the rational design and structural evolution of MOF-derived materials to achieve inexpensive and effective electrocatalysis. |
doi_str_mv | 10.1039/d1ta02159a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2537943948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537943948</sourcerecordid><originalsourceid>FETCH-LOGICAL-g150t-97a2e3245b7d8df5235346b7a22f5b61d57086767eae5bcd2f48aa9a4a285dae3</originalsourceid><addsrcrecordid>eNo9jctOwzAURC0EElXphi-wxDrg-BHbS6gIIBV1A-vqJr4urtIYHKdq_55IRcxmRmdxhpDbkt2XTNgHV2ZgvFQWLsiMM8UKLW11-b-NuSaLYdixKYaxytoZCU9hjxm6LrQ0Hk9fJ5fiMTikoadDyCN1mMIBHfUp7in0tEa-jMX7uqY-JorehzZgnyl22OYUW5hkp3y2bbGneIjdmEPsb8iVh27AxV_PyWf9_LF8LVbrl7fl46rYlorlwmrgKLhUjXbGecWFErJqJsq9aqrSKc1MpSuNgKppHffSAFiQwI1ygGJO7s7e7xR_RhzyZhfH1E-XG66EtlJYacQvhWVa_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537943948</pqid></control><display><type>article</type><title>Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ling, Xintong ; Du, Feng ; Zhang, Yintong ; Shen, Yan ; Gao, Wa ; Zhou, Bo ; Wang, Zhiyuan ; Li, Guoling ; Li, Tao ; Shen, Qing ; Xiong, Yujie ; Wang, Xiaoyong ; Zhou, Yong ; Zou, Zhigang</creator><creatorcontrib>Ling, Xintong ; Du, Feng ; Zhang, Yintong ; Shen, Yan ; Gao, Wa ; Zhou, Bo ; Wang, Zhiyuan ; Li, Guoling ; Li, Tao ; Shen, Qing ; Xiong, Yujie ; Wang, Xiaoyong ; Zhou, Yong ; Zou, Zhigang</creatorcontrib><description>Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared a Fe2Co-MIL-88B MOF on nickel foam (Fe2Co MOF/NF) through a solvothermal process. Fe0.67Co0.33OOH was in situ formed on the surface of an Fe2Co MOF during the OER, which is confirmed as the real active species. The electrocatalytic performance is significantly improved due to the electron transfer between Fe and Co, which is confirmed to be related to the positive coupling effect between Co and Fe and the change of the electronic structure caused by the replacement of Co by Fe metal ions in the MOF. Meanwhile, density functional theory calculations reveal that the OER on Fe0.67Co0.33OOH follows the Mars–van-Krevelen mechanism. The electrochemical test results show the superior OER activity of the catalyst with a low overpotential of 224 mV at a current density of 10 mA cm−2, a low Tafel slope of 45.3 mV dec−1, and excellent stability for 50 hours in 1 M KOH. This study provides a simple and effective strategy for the rational design and structural evolution of MOF-derived materials to achieve inexpensive and effective electrocatalysis.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta02159a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bimetals ; Catalysts ; Chemical evolution ; Cobalt ; Density functional theory ; Electrochemistry ; Electron transfer ; Electronic structure ; Iron ; Metal foams ; Metal ions ; Metal-organic frameworks ; Nickel ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (22), p.13271-13278</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ling, Xintong</creatorcontrib><creatorcontrib>Du, Feng</creatorcontrib><creatorcontrib>Zhang, Yintong</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Gao, Wa</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Li, Guoling</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Shen, Qing</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><title>Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared a Fe2Co-MIL-88B MOF on nickel foam (Fe2Co MOF/NF) through a solvothermal process. Fe0.67Co0.33OOH was in situ formed on the surface of an Fe2Co MOF during the OER, which is confirmed as the real active species. The electrocatalytic performance is significantly improved due to the electron transfer between Fe and Co, which is confirmed to be related to the positive coupling effect between Co and Fe and the change of the electronic structure caused by the replacement of Co by Fe metal ions in the MOF. Meanwhile, density functional theory calculations reveal that the OER on Fe0.67Co0.33OOH follows the Mars–van-Krevelen mechanism. The electrochemical test results show the superior OER activity of the catalyst with a low overpotential of 224 mV at a current density of 10 mA cm−2, a low Tafel slope of 45.3 mV dec−1, and excellent stability for 50 hours in 1 M KOH. This study provides a simple and effective strategy for the rational design and structural evolution of MOF-derived materials to achieve inexpensive and effective electrocatalysis.</description><subject>Bimetals</subject><subject>Catalysts</subject><subject>Chemical evolution</subject><subject>Cobalt</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Iron</subject><subject>Metal foams</subject><subject>Metal ions</subject><subject>Metal-organic frameworks</subject><subject>Nickel</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jctOwzAURC0EElXphi-wxDrg-BHbS6gIIBV1A-vqJr4urtIYHKdq_55IRcxmRmdxhpDbkt2XTNgHV2ZgvFQWLsiMM8UKLW11-b-NuSaLYdixKYaxytoZCU9hjxm6LrQ0Hk9fJ5fiMTikoadDyCN1mMIBHfUp7in0tEa-jMX7uqY-JorehzZgnyl22OYUW5hkp3y2bbGneIjdmEPsb8iVh27AxV_PyWf9_LF8LVbrl7fl46rYlorlwmrgKLhUjXbGecWFErJqJsq9aqrSKc1MpSuNgKppHffSAFiQwI1ygGJO7s7e7xR_RhzyZhfH1E-XG66EtlJYacQvhWVa_Q</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ling, Xintong</creator><creator>Du, Feng</creator><creator>Zhang, Yintong</creator><creator>Shen, Yan</creator><creator>Gao, Wa</creator><creator>Zhou, Bo</creator><creator>Wang, Zhiyuan</creator><creator>Li, Guoling</creator><creator>Li, Tao</creator><creator>Shen, Qing</creator><creator>Xiong, Yujie</creator><creator>Wang, Xiaoyong</creator><creator>Zhou, Yong</creator><creator>Zou, Zhigang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210101</creationdate><title>Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution</title><author>Ling, Xintong ; Du, Feng ; Zhang, Yintong ; Shen, Yan ; Gao, Wa ; Zhou, Bo ; Wang, Zhiyuan ; Li, Guoling ; Li, Tao ; Shen, Qing ; Xiong, Yujie ; Wang, Xiaoyong ; Zhou, Yong ; Zou, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g150t-97a2e3245b7d8df5235346b7a22f5b61d57086767eae5bcd2f48aa9a4a285dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bimetals</topic><topic>Catalysts</topic><topic>Chemical evolution</topic><topic>Cobalt</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Iron</topic><topic>Metal foams</topic><topic>Metal ions</topic><topic>Metal-organic frameworks</topic><topic>Nickel</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Xintong</creatorcontrib><creatorcontrib>Du, Feng</creatorcontrib><creatorcontrib>Zhang, Yintong</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Gao, Wa</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Li, Guoling</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Shen, Qing</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Xintong</au><au>Du, Feng</au><au>Zhang, Yintong</au><au>Shen, Yan</au><au>Gao, Wa</au><au>Zhou, Bo</au><au>Wang, Zhiyuan</au><au>Li, Guoling</au><au>Li, Tao</au><au>Shen, Qing</au><au>Xiong, Yujie</au><au>Wang, Xiaoyong</au><au>Zhou, Yong</au><au>Zou, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>22</issue><spage>13271</spage><epage>13278</epage><pages>13271-13278</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Metal–organic frameworks (MOFs) have received extensive attention as a research hotspot in the field of electrocatalytic water splitting. However, the study of electrochemical in situ formation of catalysts to improve the activity for the OER is far from being satisfactory. In this work, we prepared a Fe2Co-MIL-88B MOF on nickel foam (Fe2Co MOF/NF) through a solvothermal process. Fe0.67Co0.33OOH was in situ formed on the surface of an Fe2Co MOF during the OER, which is confirmed as the real active species. The electrocatalytic performance is significantly improved due to the electron transfer between Fe and Co, which is confirmed to be related to the positive coupling effect between Co and Fe and the change of the electronic structure caused by the replacement of Co by Fe metal ions in the MOF. Meanwhile, density functional theory calculations reveal that the OER on Fe0.67Co0.33OOH follows the Mars–van-Krevelen mechanism. The electrochemical test results show the superior OER activity of the catalyst with a low overpotential of 224 mV at a current density of 10 mA cm−2, a low Tafel slope of 45.3 mV dec−1, and excellent stability for 50 hours in 1 M KOH. This study provides a simple and effective strategy for the rational design and structural evolution of MOF-derived materials to achieve inexpensive and effective electrocatalysis.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta02159a</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (22), p.13271-13278 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2537943948 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bimetals Catalysts Chemical evolution Cobalt Density functional theory Electrochemistry Electron transfer Electronic structure Iron Metal foams Metal ions Metal-organic frameworks Nickel Water splitting |
title | Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimetallic%20oxyhydroxide%20in%20situ%20derived%20from%20an%20Fe2Co-MOF%20for%20efficient%20electrocatalytic%20oxygen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ling,%20Xintong&rft.date=2021-01-01&rft.volume=9&rft.issue=22&rft.spage=13271&rft.epage=13278&rft.pages=13271-13278&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta02159a&rft_dat=%3Cproquest%3E2537943948%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537943948&rft_id=info:pmid/&rfr_iscdi=true |