Exceptional low-temperature activity of a perovskite-type AlCeO3 solid solution-supported Ni-based nanocatalyst towards CO2 methanation

Currently, the development of high-performance and stable non-noble metal catalysts for low-temperature CO2 methanation is quite challenging for practical industrial applications in terms of highly efficient and renewable energy storage and conversion. In this work, highly dispersed Ni nanoparticles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2021-01, Vol.11 (11), p.3894-3904
Hauptverfasser: Zhang, Jingyi, Ren, Baojin, Fan, Guoli, Yang, Lan, Li, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3904
container_issue 11
container_start_page 3894
container_title Catalysis science & technology
container_volume 11
creator Zhang, Jingyi
Ren, Baojin
Fan, Guoli
Yang, Lan
Li, Feng
description Currently, the development of high-performance and stable non-noble metal catalysts for low-temperature CO2 methanation is quite challenging for practical industrial applications in terms of highly efficient and renewable energy storage and conversion. In this work, highly dispersed Ni nanoparticles over a perovskite-type AlCeO3 solid-solution support as catalysts for exceptional low-temperature CO2 methanation were synthesized via an innovative single-source Ni–Al–Ce layered double hydroxide (LDH) precursor route. It was demonstrated that the as-fabricated Ni-based catalyst with a Ce/(Ce + Al) molar ratio of 0.2 displayed superior low-temperature catalytic activity for CO2 methanation compared to the Ce-free Ni catalyst and Ni/CeO2 and Ni/Al2O3 catalysts obtained via the impregnation method for comparison, with a high CO2 conversion of 83.2% at only 200 °C and a high CO2 turnover frequency value of 18.2 h−1 achieved at a low reaction temperature of 175 °C. This remarkable low-temperature activity of the catalyst for CO2 methanation outperforms all other supported Ni catalysts reported thus far. It was verified that the favorable Ce3+ sites in the perovskite-type AlCeO3 solid solution contribute to the enhanced medium-strength surface basicity, which is beneficial for CO2 adsorption and the formation of formate intermediate species, thus greatly accelerating the transformation of formate intermediates to the target methane product. Furthermore, for the Ni/AlCe-0.2 catalyst, no deactivation could be observed, indicating the good stability and reusability of the Ce-containing Ni-based catalysts. The present findings provide a new stable and high-performance non-noble metal-based catalyst by integrating Ni nanoparticles with perovskite-type AlCeO3 solid-solution support for exceptional low-temperature CO2 methanation.
doi_str_mv 10.1039/d1cy00340b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2537929765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537929765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-a2894ac61eb3962e9e09cf648d6600c1271e88c856ab63876fd97b0ad595d6df3</originalsourceid><addsrcrecordid>eNo9T81Kw0AYXETBUnvxCRY8r-5PsskeS6haKPai5_Jl9wumptmY3bTmCXxtUxTnMDMMzMAQciv4veDKPDhhR85VwssLMpM8SViSaXH571N1TRYh7PmExAieyxn5Xn1Z7GLtW2ho408s4qHDHuLQIwUb62MdR-orCnSK_TF81BFZHDuky6bAraLBN7U783BeYWHoOt9HdPSlZiWEybTQegsRmjFEGv0JehdosZX0gPEdWjj3bshVBU3AxZ_Oydvj6rV4Zpvt07pYbpgVRkQGMjcJWC2wVEZLNMiNrXSSO605t0JmAvPc5qmGUqs805UzWcnBpSZ12lVqTu5-d7vefw4Y4m7vh346H3YyVZmRJtOp-gHqf2Zc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537929765</pqid></control><display><type>article</type><title>Exceptional low-temperature activity of a perovskite-type AlCeO3 solid solution-supported Ni-based nanocatalyst towards CO2 methanation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, Jingyi ; Ren, Baojin ; Fan, Guoli ; Yang, Lan ; Li, Feng</creator><creatorcontrib>Zhang, Jingyi ; Ren, Baojin ; Fan, Guoli ; Yang, Lan ; Li, Feng</creatorcontrib><description>Currently, the development of high-performance and stable non-noble metal catalysts for low-temperature CO2 methanation is quite challenging for practical industrial applications in terms of highly efficient and renewable energy storage and conversion. In this work, highly dispersed Ni nanoparticles over a perovskite-type AlCeO3 solid-solution support as catalysts for exceptional low-temperature CO2 methanation were synthesized via an innovative single-source Ni–Al–Ce layered double hydroxide (LDH) precursor route. It was demonstrated that the as-fabricated Ni-based catalyst with a Ce/(Ce + Al) molar ratio of 0.2 displayed superior low-temperature catalytic activity for CO2 methanation compared to the Ce-free Ni catalyst and Ni/CeO2 and Ni/Al2O3 catalysts obtained via the impregnation method for comparison, with a high CO2 conversion of 83.2% at only 200 °C and a high CO2 turnover frequency value of 18.2 h−1 achieved at a low reaction temperature of 175 °C. This remarkable low-temperature activity of the catalyst for CO2 methanation outperforms all other supported Ni catalysts reported thus far. It was verified that the favorable Ce3+ sites in the perovskite-type AlCeO3 solid solution contribute to the enhanced medium-strength surface basicity, which is beneficial for CO2 adsorption and the formation of formate intermediate species, thus greatly accelerating the transformation of formate intermediates to the target methane product. Furthermore, for the Ni/AlCe-0.2 catalyst, no deactivation could be observed, indicating the good stability and reusability of the Ce-containing Ni-based catalysts. The present findings provide a new stable and high-performance non-noble metal-based catalyst by integrating Ni nanoparticles with perovskite-type AlCeO3 solid-solution support for exceptional low-temperature CO2 methanation.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d1cy00340b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Basicity ; Carbon dioxide ; Catalysts ; Catalytic activity ; Cerium oxides ; Conversion ; Energy storage ; Hydroxides ; Industrial applications ; Low temperature ; Methanation ; Nanoparticles ; Nickel ; Noble metals ; Perovskites ; Solid solutions</subject><ispartof>Catalysis science &amp; technology, 2021-01, Vol.11 (11), p.3894-3904</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c191t-a2894ac61eb3962e9e09cf648d6600c1271e88c856ab63876fd97b0ad595d6df3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Jingyi</creatorcontrib><creatorcontrib>Ren, Baojin</creatorcontrib><creatorcontrib>Fan, Guoli</creatorcontrib><creatorcontrib>Yang, Lan</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><title>Exceptional low-temperature activity of a perovskite-type AlCeO3 solid solution-supported Ni-based nanocatalyst towards CO2 methanation</title><title>Catalysis science &amp; technology</title><description>Currently, the development of high-performance and stable non-noble metal catalysts for low-temperature CO2 methanation is quite challenging for practical industrial applications in terms of highly efficient and renewable energy storage and conversion. In this work, highly dispersed Ni nanoparticles over a perovskite-type AlCeO3 solid-solution support as catalysts for exceptional low-temperature CO2 methanation were synthesized via an innovative single-source Ni–Al–Ce layered double hydroxide (LDH) precursor route. It was demonstrated that the as-fabricated Ni-based catalyst with a Ce/(Ce + Al) molar ratio of 0.2 displayed superior low-temperature catalytic activity for CO2 methanation compared to the Ce-free Ni catalyst and Ni/CeO2 and Ni/Al2O3 catalysts obtained via the impregnation method for comparison, with a high CO2 conversion of 83.2% at only 200 °C and a high CO2 turnover frequency value of 18.2 h−1 achieved at a low reaction temperature of 175 °C. This remarkable low-temperature activity of the catalyst for CO2 methanation outperforms all other supported Ni catalysts reported thus far. It was verified that the favorable Ce3+ sites in the perovskite-type AlCeO3 solid solution contribute to the enhanced medium-strength surface basicity, which is beneficial for CO2 adsorption and the formation of formate intermediate species, thus greatly accelerating the transformation of formate intermediates to the target methane product. Furthermore, for the Ni/AlCe-0.2 catalyst, no deactivation could be observed, indicating the good stability and reusability of the Ce-containing Ni-based catalysts. The present findings provide a new stable and high-performance non-noble metal-based catalyst by integrating Ni nanoparticles with perovskite-type AlCeO3 solid-solution support for exceptional low-temperature CO2 methanation.</description><subject>Aluminum oxide</subject><subject>Basicity</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cerium oxides</subject><subject>Conversion</subject><subject>Energy storage</subject><subject>Hydroxides</subject><subject>Industrial applications</subject><subject>Low temperature</subject><subject>Methanation</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Perovskites</subject><subject>Solid solutions</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9T81Kw0AYXETBUnvxCRY8r-5PsskeS6haKPai5_Jl9wumptmY3bTmCXxtUxTnMDMMzMAQciv4veDKPDhhR85VwssLMpM8SViSaXH571N1TRYh7PmExAieyxn5Xn1Z7GLtW2ho408s4qHDHuLQIwUb62MdR-orCnSK_TF81BFZHDuky6bAraLBN7U783BeYWHoOt9HdPSlZiWEybTQegsRmjFEGv0JehdosZX0gPEdWjj3bshVBU3AxZ_Oydvj6rV4Zpvt07pYbpgVRkQGMjcJWC2wVEZLNMiNrXSSO605t0JmAvPc5qmGUqs805UzWcnBpSZ12lVqTu5-d7vefw4Y4m7vh346H3YyVZmRJtOp-gHqf2Zc</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhang, Jingyi</creator><creator>Ren, Baojin</creator><creator>Fan, Guoli</creator><creator>Yang, Lan</creator><creator>Li, Feng</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210101</creationdate><title>Exceptional low-temperature activity of a perovskite-type AlCeO3 solid solution-supported Ni-based nanocatalyst towards CO2 methanation</title><author>Zhang, Jingyi ; Ren, Baojin ; Fan, Guoli ; Yang, Lan ; Li, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-a2894ac61eb3962e9e09cf648d6600c1271e88c856ab63876fd97b0ad595d6df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Basicity</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cerium oxides</topic><topic>Conversion</topic><topic>Energy storage</topic><topic>Hydroxides</topic><topic>Industrial applications</topic><topic>Low temperature</topic><topic>Methanation</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Perovskites</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingyi</creatorcontrib><creatorcontrib>Ren, Baojin</creatorcontrib><creatorcontrib>Fan, Guoli</creatorcontrib><creatorcontrib>Yang, Lan</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingyi</au><au>Ren, Baojin</au><au>Fan, Guoli</au><au>Yang, Lan</au><au>Li, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exceptional low-temperature activity of a perovskite-type AlCeO3 solid solution-supported Ni-based nanocatalyst towards CO2 methanation</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>11</issue><spage>3894</spage><epage>3904</epage><pages>3894-3904</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Currently, the development of high-performance and stable non-noble metal catalysts for low-temperature CO2 methanation is quite challenging for practical industrial applications in terms of highly efficient and renewable energy storage and conversion. In this work, highly dispersed Ni nanoparticles over a perovskite-type AlCeO3 solid-solution support as catalysts for exceptional low-temperature CO2 methanation were synthesized via an innovative single-source Ni–Al–Ce layered double hydroxide (LDH) precursor route. It was demonstrated that the as-fabricated Ni-based catalyst with a Ce/(Ce + Al) molar ratio of 0.2 displayed superior low-temperature catalytic activity for CO2 methanation compared to the Ce-free Ni catalyst and Ni/CeO2 and Ni/Al2O3 catalysts obtained via the impregnation method for comparison, with a high CO2 conversion of 83.2% at only 200 °C and a high CO2 turnover frequency value of 18.2 h−1 achieved at a low reaction temperature of 175 °C. This remarkable low-temperature activity of the catalyst for CO2 methanation outperforms all other supported Ni catalysts reported thus far. It was verified that the favorable Ce3+ sites in the perovskite-type AlCeO3 solid solution contribute to the enhanced medium-strength surface basicity, which is beneficial for CO2 adsorption and the formation of formate intermediate species, thus greatly accelerating the transformation of formate intermediates to the target methane product. Furthermore, for the Ni/AlCe-0.2 catalyst, no deactivation could be observed, indicating the good stability and reusability of the Ce-containing Ni-based catalysts. The present findings provide a new stable and high-performance non-noble metal-based catalyst by integrating Ni nanoparticles with perovskite-type AlCeO3 solid-solution support for exceptional low-temperature CO2 methanation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cy00340b</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2021-01, Vol.11 (11), p.3894-3904
issn 2044-4753
2044-4761
language eng
recordid cdi_proquest_journals_2537929765
source Royal Society Of Chemistry Journals 2008-
subjects Aluminum oxide
Basicity
Carbon dioxide
Catalysts
Catalytic activity
Cerium oxides
Conversion
Energy storage
Hydroxides
Industrial applications
Low temperature
Methanation
Nanoparticles
Nickel
Noble metals
Perovskites
Solid solutions
title Exceptional low-temperature activity of a perovskite-type AlCeO3 solid solution-supported Ni-based nanocatalyst towards CO2 methanation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exceptional%20low-temperature%20activity%20of%20a%20perovskite-type%20AlCeO3%20solid%20solution-supported%20Ni-based%20nanocatalyst%20towards%20CO2%20methanation&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Zhang,%20Jingyi&rft.date=2021-01-01&rft.volume=11&rft.issue=11&rft.spage=3894&rft.epage=3904&rft.pages=3894-3904&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d1cy00340b&rft_dat=%3Cproquest%3E2537929765%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537929765&rft_id=info:pmid/&rfr_iscdi=true