A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade
Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in t...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2021-06, Vol.56 (11-12), p.3889-3898 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3898 |
---|---|
container_issue | 11-12 |
container_start_page | 3889 |
container_title | Climate dynamics |
container_volume | 56 |
creator | Qin, Chi Li, Tim Liu, Jia Bi, Mingyu |
description | Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in the eastern boundary. Whereas a uniform background mean flow leads no scale contraction, a confluent background zonal flow causes the contraction of zonal wavelength. Under linear dynamics, the wave contraction leads to the development of smaller scale vorticity perturbations. As a result, there is no upscale cascade. Under nonlinear dynamics, cyclonic (anticyclonic) wave disturbances shift northward (southward) away from the central latitude due to the vorticity segregation process. The merging of small-scale cyclonic and anticyclonic perturbations finally leads to the generation of a pair of large-scale cyclonic and anti-cyclonic vorticity gyres, straddling across the central latitude. The large-scale cyclonic circulation due to nonlinear upscale cascade can be further strengthened through a positive convection-circulation feedback. |
doi_str_mv | 10.1007/s00382-021-05672-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2537860950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666290362</galeid><sourcerecordid>A666290362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-43db00515ed26ed776e12997e2fae4084916ac178f5b57d77a4d15dae05c1afe3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1EJZbCH-BkCQmJQ8rYie2E26oqtFIFVQtn4zrjTarEXmxHwL_H2yDBXjhYI42_Z7-ZR8grBmcMQL1LAHXLK-CsAiEVr8QTsmFNXVpt1zwlG-hqqJRQ4hl5ntIDAGsKtiHftnRGOxg_ppm6EA9nNnkMngZH84D0B6aM0dNPIeaB3hg7utHSOfgUCpRjWHbDe-qDn0aPJtJln6yZkFpTao8vyIkzU8KXf-op-frh4sv5ZXX9-ePV-fa6sg2vc9XU_T2AYAJ7LrFXSiLjXaeQO4MNtE3HpLFMtU7cC1XuTdMz0RsEYZlxWJ-S1-u7-xi-L8WzfghL9OVLzUWtWgmdgEKdrdSuWNSjdyFHY83B6Dza4NGNpb-VUvIOasmL4O2RoDAZf-adWVLSV3e3x-ybf9gBzZSHFKblsM10DPIVtDGkFNHpfRxnE39pBvqQp17z1CVP_ZinFkVUr6JUYL_D-HfA_6h-A40zoV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537860950</pqid></control><display><type>article</type><title>A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qin, Chi ; Li, Tim ; Liu, Jia ; Bi, Mingyu</creator><creatorcontrib>Qin, Chi ; Li, Tim ; Liu, Jia ; Bi, Mingyu</creatorcontrib><description>Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in the eastern boundary. Whereas a uniform background mean flow leads no scale contraction, a confluent background zonal flow causes the contraction of zonal wavelength. Under linear dynamics, the wave contraction leads to the development of smaller scale vorticity perturbations. As a result, there is no upscale cascade. Under nonlinear dynamics, cyclonic (anticyclonic) wave disturbances shift northward (southward) away from the central latitude due to the vorticity segregation process. The merging of small-scale cyclonic and anticyclonic perturbations finally leads to the generation of a pair of large-scale cyclonic and anti-cyclonic vorticity gyres, straddling across the central latitude. The large-scale cyclonic circulation due to nonlinear upscale cascade can be further strengthened through a positive convection-circulation feedback.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-021-05672-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Barotropic mode ; Climatology ; Convection ; Cyclonic circulation ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Gyres ; Laboratories ; Latitude ; Monsoon trough ; Monsoons ; Natural history ; Nonlinear dynamics ; Nonlinear systems ; Oceanography ; Perturbation ; Perturbations ; Segregation ; Segregation process ; Vorticity ; Wave disturbances ; Wavelength ; Wind ; Zonal flow ; Zonal flow (meteorology)</subject><ispartof>Climate dynamics, 2021-06, Vol.56 (11-12), p.3889-3898</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-43db00515ed26ed776e12997e2fae4084916ac178f5b57d77a4d15dae05c1afe3</citedby><cites>FETCH-LOGICAL-c423t-43db00515ed26ed776e12997e2fae4084916ac178f5b57d77a4d15dae05c1afe3</cites><orcidid>0000-0002-8733-4438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-021-05672-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-021-05672-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Qin, Chi</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Bi, Mingyu</creatorcontrib><title>A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in the eastern boundary. Whereas a uniform background mean flow leads no scale contraction, a confluent background zonal flow causes the contraction of zonal wavelength. Under linear dynamics, the wave contraction leads to the development of smaller scale vorticity perturbations. As a result, there is no upscale cascade. Under nonlinear dynamics, cyclonic (anticyclonic) wave disturbances shift northward (southward) away from the central latitude due to the vorticity segregation process. The merging of small-scale cyclonic and anticyclonic perturbations finally leads to the generation of a pair of large-scale cyclonic and anti-cyclonic vorticity gyres, straddling across the central latitude. The large-scale cyclonic circulation due to nonlinear upscale cascade can be further strengthened through a positive convection-circulation feedback.</description><subject>Barotropic mode</subject><subject>Climatology</subject><subject>Convection</subject><subject>Cyclonic circulation</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Gyres</subject><subject>Laboratories</subject><subject>Latitude</subject><subject>Monsoon trough</subject><subject>Monsoons</subject><subject>Natural history</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Oceanography</subject><subject>Perturbation</subject><subject>Perturbations</subject><subject>Segregation</subject><subject>Segregation process</subject><subject>Vorticity</subject><subject>Wave disturbances</subject><subject>Wavelength</subject><subject>Wind</subject><subject>Zonal flow</subject><subject>Zonal flow (meteorology)</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFv1DAQhS1EJZbCH-BkCQmJQ8rYie2E26oqtFIFVQtn4zrjTarEXmxHwL_H2yDBXjhYI42_Z7-ZR8grBmcMQL1LAHXLK-CsAiEVr8QTsmFNXVpt1zwlG-hqqJRQ4hl5ntIDAGsKtiHftnRGOxg_ppm6EA9nNnkMngZH84D0B6aM0dNPIeaB3hg7utHSOfgUCpRjWHbDe-qDn0aPJtJln6yZkFpTao8vyIkzU8KXf-op-frh4sv5ZXX9-ePV-fa6sg2vc9XU_T2AYAJ7LrFXSiLjXaeQO4MNtE3HpLFMtU7cC1XuTdMz0RsEYZlxWJ-S1-u7-xi-L8WzfghL9OVLzUWtWgmdgEKdrdSuWNSjdyFHY83B6Dza4NGNpb-VUvIOasmL4O2RoDAZf-adWVLSV3e3x-ybf9gBzZSHFKblsM10DPIVtDGkFNHpfRxnE39pBvqQp17z1CVP_ZinFkVUr6JUYL_D-HfA_6h-A40zoV0</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Qin, Chi</creator><creator>Li, Tim</creator><creator>Liu, Jia</creator><creator>Bi, Mingyu</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8733-4438</orcidid></search><sort><creationdate>20210601</creationdate><title>A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade</title><author>Qin, Chi ; Li, Tim ; Liu, Jia ; Bi, Mingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-43db00515ed26ed776e12997e2fae4084916ac178f5b57d77a4d15dae05c1afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barotropic mode</topic><topic>Climatology</topic><topic>Convection</topic><topic>Cyclonic circulation</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Gyres</topic><topic>Laboratories</topic><topic>Latitude</topic><topic>Monsoon trough</topic><topic>Monsoons</topic><topic>Natural history</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Oceanography</topic><topic>Perturbation</topic><topic>Perturbations</topic><topic>Segregation</topic><topic>Segregation process</topic><topic>Vorticity</topic><topic>Wave disturbances</topic><topic>Wavelength</topic><topic>Wind</topic><topic>Zonal flow</topic><topic>Zonal flow (meteorology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Chi</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Bi, Mingyu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Chi</au><au>Li, Tim</au><au>Liu, Jia</au><au>Bi, Mingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>56</volume><issue>11-12</issue><spage>3889</spage><epage>3898</epage><pages>3889-3898</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in the eastern boundary. Whereas a uniform background mean flow leads no scale contraction, a confluent background zonal flow causes the contraction of zonal wavelength. Under linear dynamics, the wave contraction leads to the development of smaller scale vorticity perturbations. As a result, there is no upscale cascade. Under nonlinear dynamics, cyclonic (anticyclonic) wave disturbances shift northward (southward) away from the central latitude due to the vorticity segregation process. The merging of small-scale cyclonic and anticyclonic perturbations finally leads to the generation of a pair of large-scale cyclonic and anti-cyclonic vorticity gyres, straddling across the central latitude. The large-scale cyclonic circulation due to nonlinear upscale cascade can be further strengthened through a positive convection-circulation feedback.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-021-05672-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8733-4438</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2021-06, Vol.56 (11-12), p.3889-3898 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2537860950 |
source | SpringerLink Journals - AutoHoldings |
subjects | Barotropic mode Climatology Convection Cyclonic circulation Dynamics Earth and Environmental Science Earth Sciences Geophysics/Geodesy Gyres Laboratories Latitude Monsoon trough Monsoons Natural history Nonlinear dynamics Nonlinear systems Oceanography Perturbation Perturbations Segregation Segregation process Vorticity Wave disturbances Wavelength Wind Zonal flow Zonal flow (meteorology) |
title | A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanism%20for%20formation%20of%20the%20western%20North%20Pacific%20monsoon%20trough:%20nonlinear%20upscale%20cascade&rft.jtitle=Climate%20dynamics&rft.au=Qin,%20Chi&rft.date=2021-06-01&rft.volume=56&rft.issue=11-12&rft.spage=3889&rft.epage=3898&rft.pages=3889-3898&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-021-05672-5&rft_dat=%3Cgale_proqu%3EA666290362%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537860950&rft_id=info:pmid/&rft_galeid=A666290362&rfr_iscdi=true |