A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade

Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2021-06, Vol.56 (11-12), p.3889-3898
Hauptverfasser: Qin, Chi, Li, Tim, Liu, Jia, Bi, Mingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3898
container_issue 11-12
container_start_page 3889
container_title Climate dynamics
container_volume 56
creator Qin, Chi
Li, Tim
Liu, Jia
Bi, Mingyu
description Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in the eastern boundary. Whereas a uniform background mean flow leads no scale contraction, a confluent background zonal flow causes the contraction of zonal wavelength. Under linear dynamics, the wave contraction leads to the development of smaller scale vorticity perturbations. As a result, there is no upscale cascade. Under nonlinear dynamics, cyclonic (anticyclonic) wave disturbances shift northward (southward) away from the central latitude due to the vorticity segregation process. The merging of small-scale cyclonic and anticyclonic perturbations finally leads to the generation of a pair of large-scale cyclonic and anti-cyclonic vorticity gyres, straddling across the central latitude. The large-scale cyclonic circulation due to nonlinear upscale cascade can be further strengthened through a positive convection-circulation feedback.
doi_str_mv 10.1007/s00382-021-05672-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2537860950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666290362</galeid><sourcerecordid>A666290362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-43db00515ed26ed776e12997e2fae4084916ac178f5b57d77a4d15dae05c1afe3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1EJZbCH-BkCQmJQ8rYie2E26oqtFIFVQtn4zrjTarEXmxHwL_H2yDBXjhYI42_Z7-ZR8grBmcMQL1LAHXLK-CsAiEVr8QTsmFNXVpt1zwlG-hqqJRQ4hl5ntIDAGsKtiHftnRGOxg_ppm6EA9nNnkMngZH84D0B6aM0dNPIeaB3hg7utHSOfgUCpRjWHbDe-qDn0aPJtJln6yZkFpTao8vyIkzU8KXf-op-frh4sv5ZXX9-ePV-fa6sg2vc9XU_T2AYAJ7LrFXSiLjXaeQO4MNtE3HpLFMtU7cC1XuTdMz0RsEYZlxWJ-S1-u7-xi-L8WzfghL9OVLzUWtWgmdgEKdrdSuWNSjdyFHY83B6Dza4NGNpb-VUvIOasmL4O2RoDAZf-adWVLSV3e3x-ybf9gBzZSHFKblsM10DPIVtDGkFNHpfRxnE39pBvqQp17z1CVP_ZinFkVUr6JUYL_D-HfA_6h-A40zoV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537860950</pqid></control><display><type>article</type><title>A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qin, Chi ; Li, Tim ; Liu, Jia ; Bi, Mingyu</creator><creatorcontrib>Qin, Chi ; Li, Tim ; Liu, Jia ; Bi, Mingyu</creatorcontrib><description>Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in the eastern boundary. Whereas a uniform background mean flow leads no scale contraction, a confluent background zonal flow causes the contraction of zonal wavelength. Under linear dynamics, the wave contraction leads to the development of smaller scale vorticity perturbations. As a result, there is no upscale cascade. Under nonlinear dynamics, cyclonic (anticyclonic) wave disturbances shift northward (southward) away from the central latitude due to the vorticity segregation process. The merging of small-scale cyclonic and anticyclonic perturbations finally leads to the generation of a pair of large-scale cyclonic and anti-cyclonic vorticity gyres, straddling across the central latitude. The large-scale cyclonic circulation due to nonlinear upscale cascade can be further strengthened through a positive convection-circulation feedback.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-021-05672-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Barotropic mode ; Climatology ; Convection ; Cyclonic circulation ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Gyres ; Laboratories ; Latitude ; Monsoon trough ; Monsoons ; Natural history ; Nonlinear dynamics ; Nonlinear systems ; Oceanography ; Perturbation ; Perturbations ; Segregation ; Segregation process ; Vorticity ; Wave disturbances ; Wavelength ; Wind ; Zonal flow ; Zonal flow (meteorology)</subject><ispartof>Climate dynamics, 2021-06, Vol.56 (11-12), p.3889-3898</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-43db00515ed26ed776e12997e2fae4084916ac178f5b57d77a4d15dae05c1afe3</citedby><cites>FETCH-LOGICAL-c423t-43db00515ed26ed776e12997e2fae4084916ac178f5b57d77a4d15dae05c1afe3</cites><orcidid>0000-0002-8733-4438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-021-05672-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-021-05672-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Qin, Chi</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Bi, Mingyu</creatorcontrib><title>A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in the eastern boundary. Whereas a uniform background mean flow leads no scale contraction, a confluent background zonal flow causes the contraction of zonal wavelength. Under linear dynamics, the wave contraction leads to the development of smaller scale vorticity perturbations. As a result, there is no upscale cascade. Under nonlinear dynamics, cyclonic (anticyclonic) wave disturbances shift northward (southward) away from the central latitude due to the vorticity segregation process. The merging of small-scale cyclonic and anticyclonic perturbations finally leads to the generation of a pair of large-scale cyclonic and anti-cyclonic vorticity gyres, straddling across the central latitude. The large-scale cyclonic circulation due to nonlinear upscale cascade can be further strengthened through a positive convection-circulation feedback.</description><subject>Barotropic mode</subject><subject>Climatology</subject><subject>Convection</subject><subject>Cyclonic circulation</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Gyres</subject><subject>Laboratories</subject><subject>Latitude</subject><subject>Monsoon trough</subject><subject>Monsoons</subject><subject>Natural history</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Oceanography</subject><subject>Perturbation</subject><subject>Perturbations</subject><subject>Segregation</subject><subject>Segregation process</subject><subject>Vorticity</subject><subject>Wave disturbances</subject><subject>Wavelength</subject><subject>Wind</subject><subject>Zonal flow</subject><subject>Zonal flow (meteorology)</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFv1DAQhS1EJZbCH-BkCQmJQ8rYie2E26oqtFIFVQtn4zrjTarEXmxHwL_H2yDBXjhYI42_Z7-ZR8grBmcMQL1LAHXLK-CsAiEVr8QTsmFNXVpt1zwlG-hqqJRQ4hl5ntIDAGsKtiHftnRGOxg_ppm6EA9nNnkMngZH84D0B6aM0dNPIeaB3hg7utHSOfgUCpRjWHbDe-qDn0aPJtJln6yZkFpTao8vyIkzU8KXf-op-frh4sv5ZXX9-ePV-fa6sg2vc9XU_T2AYAJ7LrFXSiLjXaeQO4MNtE3HpLFMtU7cC1XuTdMz0RsEYZlxWJ-S1-u7-xi-L8WzfghL9OVLzUWtWgmdgEKdrdSuWNSjdyFHY83B6Dza4NGNpb-VUvIOasmL4O2RoDAZf-adWVLSV3e3x-ybf9gBzZSHFKblsM10DPIVtDGkFNHpfRxnE39pBvqQp17z1CVP_ZinFkVUr6JUYL_D-HfA_6h-A40zoV0</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Qin, Chi</creator><creator>Li, Tim</creator><creator>Liu, Jia</creator><creator>Bi, Mingyu</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8733-4438</orcidid></search><sort><creationdate>20210601</creationdate><title>A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade</title><author>Qin, Chi ; Li, Tim ; Liu, Jia ; Bi, Mingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-43db00515ed26ed776e12997e2fae4084916ac178f5b57d77a4d15dae05c1afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barotropic mode</topic><topic>Climatology</topic><topic>Convection</topic><topic>Cyclonic circulation</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Gyres</topic><topic>Laboratories</topic><topic>Latitude</topic><topic>Monsoon trough</topic><topic>Monsoons</topic><topic>Natural history</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Oceanography</topic><topic>Perturbation</topic><topic>Perturbations</topic><topic>Segregation</topic><topic>Segregation process</topic><topic>Vorticity</topic><topic>Wave disturbances</topic><topic>Wavelength</topic><topic>Wind</topic><topic>Zonal flow</topic><topic>Zonal flow (meteorology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Chi</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Bi, Mingyu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Chi</au><au>Li, Tim</au><au>Liu, Jia</au><au>Bi, Mingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>56</volume><issue>11-12</issue><spage>3889</spage><epage>3898</epage><pages>3889-3898</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Linear and nonlinear barotropic vorticity model frameworks are constructed to understand the formation of the monsoon trough in boreal summer over the western North Pacific. The governing equation is written with respect to specified zonal background flows, and a wave perturbation is prescribed in the eastern boundary. Whereas a uniform background mean flow leads no scale contraction, a confluent background zonal flow causes the contraction of zonal wavelength. Under linear dynamics, the wave contraction leads to the development of smaller scale vorticity perturbations. As a result, there is no upscale cascade. Under nonlinear dynamics, cyclonic (anticyclonic) wave disturbances shift northward (southward) away from the central latitude due to the vorticity segregation process. The merging of small-scale cyclonic and anticyclonic perturbations finally leads to the generation of a pair of large-scale cyclonic and anti-cyclonic vorticity gyres, straddling across the central latitude. The large-scale cyclonic circulation due to nonlinear upscale cascade can be further strengthened through a positive convection-circulation feedback.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-021-05672-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8733-4438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2021-06, Vol.56 (11-12), p.3889-3898
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2537860950
source SpringerLink Journals - AutoHoldings
subjects Barotropic mode
Climatology
Convection
Cyclonic circulation
Dynamics
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Gyres
Laboratories
Latitude
Monsoon trough
Monsoons
Natural history
Nonlinear dynamics
Nonlinear systems
Oceanography
Perturbation
Perturbations
Segregation
Segregation process
Vorticity
Wave disturbances
Wavelength
Wind
Zonal flow
Zonal flow (meteorology)
title A mechanism for formation of the western North Pacific monsoon trough: nonlinear upscale cascade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanism%20for%20formation%20of%20the%20western%20North%20Pacific%20monsoon%20trough:%20nonlinear%20upscale%20cascade&rft.jtitle=Climate%20dynamics&rft.au=Qin,%20Chi&rft.date=2021-06-01&rft.volume=56&rft.issue=11-12&rft.spage=3889&rft.epage=3898&rft.pages=3889-3898&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-021-05672-5&rft_dat=%3Cgale_proqu%3EA666290362%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537860950&rft_id=info:pmid/&rft_galeid=A666290362&rfr_iscdi=true