Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like 3dx2−y2 band

Recent discovery of superconductivity in the doped infinite-layer nickelates has renewed interest in understanding the nature of high-temperature superconductivity more generally. The low-energy electronic structure of the parent compound NdNiO 2 , the role of electronic correlations in driving supe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications physics 2021-06, Vol.4 (1)
Hauptverfasser: Zhang, Ruiqi, Lane, Christopher, Singh, Bahadur, Nokelainen, Johannes, Barbiellini, Bernardo, Markiewicz, Robert S., Bansil, Arun, Sun, Jianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Communications physics
container_volume 4
creator Zhang, Ruiqi
Lane, Christopher
Singh, Bahadur
Nokelainen, Johannes
Barbiellini, Bernardo
Markiewicz, Robert S.
Bansil, Arun
Sun, Jianwei
description Recent discovery of superconductivity in the doped infinite-layer nickelates has renewed interest in understanding the nature of high-temperature superconductivity more generally. The low-energy electronic structure of the parent compound NdNiO 2 , the role of electronic correlations in driving superconductivity, and the possible relationship between the cuprates and the nickelates are still open questions. Here, by comparing LaNiO 2 and NdNiO 2 systematically within a parameter-free, all-electron first-principles density-functional theory framework, we reveal the role of Nd 4 f electrons in shaping the ground state of pristine NdNiO 2 . Strong similarities are found between the electronic structures of LaNiO 2 and NdNiO 2 , except for the effects of the 4 f electrons. Hybridization between the Nd 4 f and Ni 3 d orbitals is shown to significantly modify the Fermi surfaces of various magnetic states. In contrast, the competition between the magnetically ordered phases depends mainly on the gaps in the Ni 3 d x 2 − y 2 band. Our estimated value of the on-site Hubbard U in the nickelates is similar to that in the cuprates, but the value of the Hund’s coupling J H is found to be sensitive to the Nd magnetic moment. In contrast with the cuprates, NdNiO 2 presents 3D magnetism with competing antiferromagnetic and (interlayer) ferromagnetic exchange, which may explain why the T c is lower in the nickelates. The recent discovery of superconducting nickelates has reignited interest in these materials and whether they can shed light on the mechanism of unconventional superconductivity in the cuprates. Here, the authors use first principles calculations to investigate the f electrons and magnetic ordering effects in the infinite layer nickelates and elaborate on the role of the cuprate-like 3dx2-y2 band.
doi_str_mv 10.1038/s42005-021-00621-4
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2537858363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537858363</sourcerecordid><originalsourceid>FETCH-LOGICAL-p724-8fa42f197b420c474c1fe12b61c0ea4fce631f425c881b43491c8945e174753e3</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMgWGpfwFXAdTTXSWYpxRvUdtN9zKQnNe2QjpMp6hu49hF9EmMruDnnP5zvXPgRumD0ilFhrrPklCpCOSOUViXKEzTioq6JqBQ9Q5OcN5SWtqRaVCP0_OTWCYbosUsrHAi04Id-lzCEUFTGMeGZm8cFPwDz1UGm6LfQugEyfovDC_b7ri8VaeMWsFi98-_Prw-OmzJyjk6DazNM_vIYLe9ul9MHMlvcP05vZqTTXBITnOSB1bop_3uppWcBGG8q5ik4GTxUggXJlTeGNVLImnlTSwVMS60EiDG6PK7t-t3rHvJgN7t9n8pFy5XQRhlRiUKJI5W7PqY19P8Uo_bXQHs00BaH7MFAK8UPyhFj5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537858363</pqid></control><display><type>article</type><title>Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like 3dx2−y2 band</title><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Springer Nature OA/Free Journals</source><creator>Zhang, Ruiqi ; Lane, Christopher ; Singh, Bahadur ; Nokelainen, Johannes ; Barbiellini, Bernardo ; Markiewicz, Robert S. ; Bansil, Arun ; Sun, Jianwei</creator><creatorcontrib>Zhang, Ruiqi ; Lane, Christopher ; Singh, Bahadur ; Nokelainen, Johannes ; Barbiellini, Bernardo ; Markiewicz, Robert S. ; Bansil, Arun ; Sun, Jianwei</creatorcontrib><description>Recent discovery of superconductivity in the doped infinite-layer nickelates has renewed interest in understanding the nature of high-temperature superconductivity more generally. The low-energy electronic structure of the parent compound NdNiO 2 , the role of electronic correlations in driving superconductivity, and the possible relationship between the cuprates and the nickelates are still open questions. Here, by comparing LaNiO 2 and NdNiO 2 systematically within a parameter-free, all-electron first-principles density-functional theory framework, we reveal the role of Nd 4 f electrons in shaping the ground state of pristine NdNiO 2 . Strong similarities are found between the electronic structures of LaNiO 2 and NdNiO 2 , except for the effects of the 4 f electrons. Hybridization between the Nd 4 f and Ni 3 d orbitals is shown to significantly modify the Fermi surfaces of various magnetic states. In contrast, the competition between the magnetically ordered phases depends mainly on the gaps in the Ni 3 d x 2 − y 2 band. Our estimated value of the on-site Hubbard U in the nickelates is similar to that in the cuprates, but the value of the Hund’s coupling J H is found to be sensitive to the Nd magnetic moment. In contrast with the cuprates, NdNiO 2 presents 3D magnetism with competing antiferromagnetic and (interlayer) ferromagnetic exchange, which may explain why the T c is lower in the nickelates. The recent discovery of superconducting nickelates has reignited interest in these materials and whether they can shed light on the mechanism of unconventional superconductivity in the cuprates. Here, the authors use first principles calculations to investigate the f electrons and magnetic ordering effects in the infinite layer nickelates and elaborate on the role of the cuprate-like 3dx2-y2 band.</description><identifier>EISSN: 2399-3650</identifier><identifier>DOI: 10.1038/s42005-021-00621-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/563/979 ; 639/766/119/1003 ; 639/766/119/995 ; Antiferromagnetism ; Cuprates ; Density functional theory ; Electronic structure ; Electrons ; Fermi surfaces ; Ferromagnetism ; First principles ; High temperature ; Interlayers ; Magnetic moments ; Magnetism ; Neodymium ; Nickel ; Physics ; Physics and Astronomy ; Unconventional superconductivity</subject><ispartof>Communications physics, 2021-06, Vol.4 (1)</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p724-8fa42f197b420c474c1fe12b61c0ea4fce631f425c881b43491c8945e174753e3</cites><orcidid>0000-0002-2013-1126 ; 0000-0002-2361-6823 ; 0000-0002-7820-6020 ; 0000-0002-3864-3461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42005-021-00621-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s42005-021-00621-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,27928,27929,41124,42193,51580</link.rule.ids></links><search><creatorcontrib>Zhang, Ruiqi</creatorcontrib><creatorcontrib>Lane, Christopher</creatorcontrib><creatorcontrib>Singh, Bahadur</creatorcontrib><creatorcontrib>Nokelainen, Johannes</creatorcontrib><creatorcontrib>Barbiellini, Bernardo</creatorcontrib><creatorcontrib>Markiewicz, Robert S.</creatorcontrib><creatorcontrib>Bansil, Arun</creatorcontrib><creatorcontrib>Sun, Jianwei</creatorcontrib><title>Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like 3dx2−y2 band</title><title>Communications physics</title><addtitle>Commun Phys</addtitle><description>Recent discovery of superconductivity in the doped infinite-layer nickelates has renewed interest in understanding the nature of high-temperature superconductivity more generally. The low-energy electronic structure of the parent compound NdNiO 2 , the role of electronic correlations in driving superconductivity, and the possible relationship between the cuprates and the nickelates are still open questions. Here, by comparing LaNiO 2 and NdNiO 2 systematically within a parameter-free, all-electron first-principles density-functional theory framework, we reveal the role of Nd 4 f electrons in shaping the ground state of pristine NdNiO 2 . Strong similarities are found between the electronic structures of LaNiO 2 and NdNiO 2 , except for the effects of the 4 f electrons. Hybridization between the Nd 4 f and Ni 3 d orbitals is shown to significantly modify the Fermi surfaces of various magnetic states. In contrast, the competition between the magnetically ordered phases depends mainly on the gaps in the Ni 3 d x 2 − y 2 band. Our estimated value of the on-site Hubbard U in the nickelates is similar to that in the cuprates, but the value of the Hund’s coupling J H is found to be sensitive to the Nd magnetic moment. In contrast with the cuprates, NdNiO 2 presents 3D magnetism with competing antiferromagnetic and (interlayer) ferromagnetic exchange, which may explain why the T c is lower in the nickelates. The recent discovery of superconducting nickelates has reignited interest in these materials and whether they can shed light on the mechanism of unconventional superconductivity in the cuprates. Here, the authors use first principles calculations to investigate the f electrons and magnetic ordering effects in the infinite layer nickelates and elaborate on the role of the cuprate-like 3dx2-y2 band.</description><subject>639/638/563/979</subject><subject>639/766/119/1003</subject><subject>639/766/119/995</subject><subject>Antiferromagnetism</subject><subject>Cuprates</subject><subject>Density functional theory</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Fermi surfaces</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>High temperature</subject><subject>Interlayers</subject><subject>Magnetic moments</subject><subject>Magnetism</subject><subject>Neodymium</subject><subject>Nickel</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Unconventional superconductivity</subject><issn>2399-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkMtKAzEUhoMgWGpfwFXAdTTXSWYpxRvUdtN9zKQnNe2QjpMp6hu49hF9EmMruDnnP5zvXPgRumD0ilFhrrPklCpCOSOUViXKEzTioq6JqBQ9Q5OcN5SWtqRaVCP0_OTWCYbosUsrHAi04Id-lzCEUFTGMeGZm8cFPwDz1UGm6LfQugEyfovDC_b7ri8VaeMWsFi98-_Prw-OmzJyjk6DazNM_vIYLe9ul9MHMlvcP05vZqTTXBITnOSB1bop_3uppWcBGG8q5ik4GTxUggXJlTeGNVLImnlTSwVMS60EiDG6PK7t-t3rHvJgN7t9n8pFy5XQRhlRiUKJI5W7PqY19P8Uo_bXQHs00BaH7MFAK8UPyhFj5g</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Zhang, Ruiqi</creator><creator>Lane, Christopher</creator><creator>Singh, Bahadur</creator><creator>Nokelainen, Johannes</creator><creator>Barbiellini, Bernardo</creator><creator>Markiewicz, Robert S.</creator><creator>Bansil, Arun</creator><creator>Sun, Jianwei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2013-1126</orcidid><orcidid>https://orcid.org/0000-0002-2361-6823</orcidid><orcidid>https://orcid.org/0000-0002-7820-6020</orcidid><orcidid>https://orcid.org/0000-0002-3864-3461</orcidid></search><sort><creationdate>20210607</creationdate><title>Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like 3dx2−y2 band</title><author>Zhang, Ruiqi ; Lane, Christopher ; Singh, Bahadur ; Nokelainen, Johannes ; Barbiellini, Bernardo ; Markiewicz, Robert S. ; Bansil, Arun ; Sun, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p724-8fa42f197b420c474c1fe12b61c0ea4fce631f425c881b43491c8945e174753e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/563/979</topic><topic>639/766/119/1003</topic><topic>639/766/119/995</topic><topic>Antiferromagnetism</topic><topic>Cuprates</topic><topic>Density functional theory</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Fermi surfaces</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>High temperature</topic><topic>Interlayers</topic><topic>Magnetic moments</topic><topic>Magnetism</topic><topic>Neodymium</topic><topic>Nickel</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Unconventional superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ruiqi</creatorcontrib><creatorcontrib>Lane, Christopher</creatorcontrib><creatorcontrib>Singh, Bahadur</creatorcontrib><creatorcontrib>Nokelainen, Johannes</creatorcontrib><creatorcontrib>Barbiellini, Bernardo</creatorcontrib><creatorcontrib>Markiewicz, Robert S.</creatorcontrib><creatorcontrib>Bansil, Arun</creatorcontrib><creatorcontrib>Sun, Jianwei</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Communications physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ruiqi</au><au>Lane, Christopher</au><au>Singh, Bahadur</au><au>Nokelainen, Johannes</au><au>Barbiellini, Bernardo</au><au>Markiewicz, Robert S.</au><au>Bansil, Arun</au><au>Sun, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like 3dx2−y2 band</atitle><jtitle>Communications physics</jtitle><stitle>Commun Phys</stitle><date>2021-06-07</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><eissn>2399-3650</eissn><abstract>Recent discovery of superconductivity in the doped infinite-layer nickelates has renewed interest in understanding the nature of high-temperature superconductivity more generally. The low-energy electronic structure of the parent compound NdNiO 2 , the role of electronic correlations in driving superconductivity, and the possible relationship between the cuprates and the nickelates are still open questions. Here, by comparing LaNiO 2 and NdNiO 2 systematically within a parameter-free, all-electron first-principles density-functional theory framework, we reveal the role of Nd 4 f electrons in shaping the ground state of pristine NdNiO 2 . Strong similarities are found between the electronic structures of LaNiO 2 and NdNiO 2 , except for the effects of the 4 f electrons. Hybridization between the Nd 4 f and Ni 3 d orbitals is shown to significantly modify the Fermi surfaces of various magnetic states. In contrast, the competition between the magnetically ordered phases depends mainly on the gaps in the Ni 3 d x 2 − y 2 band. Our estimated value of the on-site Hubbard U in the nickelates is similar to that in the cuprates, but the value of the Hund’s coupling J H is found to be sensitive to the Nd magnetic moment. In contrast with the cuprates, NdNiO 2 presents 3D magnetism with competing antiferromagnetic and (interlayer) ferromagnetic exchange, which may explain why the T c is lower in the nickelates. The recent discovery of superconducting nickelates has reignited interest in these materials and whether they can shed light on the mechanism of unconventional superconductivity in the cuprates. Here, the authors use first principles calculations to investigate the f electrons and magnetic ordering effects in the infinite layer nickelates and elaborate on the role of the cuprate-like 3dx2-y2 band.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42005-021-00621-4</doi><orcidid>https://orcid.org/0000-0002-2013-1126</orcidid><orcidid>https://orcid.org/0000-0002-2361-6823</orcidid><orcidid>https://orcid.org/0000-0002-7820-6020</orcidid><orcidid>https://orcid.org/0000-0002-3864-3461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2399-3650
ispartof Communications physics, 2021-06, Vol.4 (1)
issn 2399-3650
language eng
recordid cdi_proquest_journals_2537858363
source DOAJ Directory of Open Access Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; Springer Nature OA/Free Journals
subjects 639/638/563/979
639/766/119/1003
639/766/119/995
Antiferromagnetism
Cuprates
Density functional theory
Electronic structure
Electrons
Fermi surfaces
Ferromagnetism
First principles
High temperature
Interlayers
Magnetic moments
Magnetism
Neodymium
Nickel
Physics
Physics and Astronomy
Unconventional superconductivity
title Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like 3dx2−y2 band
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20and%20f-electron%20effects%20in%20LaNiO2%20and%20NdNiO2%20nickelates%20with%20cuprate-like%203dx2%E2%88%92y2%20band&rft.jtitle=Communications%20physics&rft.au=Zhang,%20Ruiqi&rft.date=2021-06-07&rft.volume=4&rft.issue=1&rft.eissn=2399-3650&rft_id=info:doi/10.1038/s42005-021-00621-4&rft_dat=%3Cproquest_sprin%3E2537858363%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537858363&rft_id=info:pmid/&rfr_iscdi=true