Multi-objective optimization of a solar chimney for power generation and water desalination using neural network

•A hybrid solar chimney is investigated for power generation and water desalination.•Neural networks are trained to predict turbine velocity and water evaporation rate.•Multi-objective optimization is used to maximize the production of power and water.•Geometrical parameters of the system including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2021-06, Vol.238, p.114152, Article 114152
Hauptverfasser: Azad, Amirreza, Aghaei, Elika, Jalali, Alireza, Ahmadi, Pouria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114152
container_title Energy conversion and management
container_volume 238
creator Azad, Amirreza
Aghaei, Elika
Jalali, Alireza
Ahmadi, Pouria
description •A hybrid solar chimney is investigated for power generation and water desalination.•Neural networks are trained to predict turbine velocity and water evaporation rate.•Multi-objective optimization is used to maximize the production of power and water.•Geometrical parameters of the system including curvature parameters are optimized.•The most optimal point provides 719 kW of power and 14.28 kg.s-1 of water. Given that the initial cost of constructing a solar chimney system is high, the multi-purpose use of this system for power generation and freshwater production from seawater is vital to make the system economically feasible. To achieve the best balance between the turbine power generation and freshwater production, the optimization of design parameters such as collector’s height and diameter, chimney’s height and diameter, and the curvature of the outer wall of the chimney is necessary. Also, due to the high volume of calculations required for the numerical simulation of any arrangement of parameters, a neural network for the prediction of the output quantities is advantageous. Therefore, a perceptron neural network with two hidden layers has been implemented to predict the average temperature on the collector’s surface and the average air velocity at the turbine inlet to calculate total power and condensed water. Finally, the genetic algorithm is implemented for optimization, and the Pareto frontier is obtained for this problem. The total power generation values and freshwater production corresponding to the most optimal point are 719 kW and 14.28 kg.s-1, respectively.
doi_str_mv 10.1016/j.enconman.2021.114152
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537701106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890421003289</els_id><sourcerecordid>2537701106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-23871a608cf423057ab3d1a6328b15adc6753ae3bfe5b2989a22e6128575cd333</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BQm4bs1j0sdOGXzBiBtdhzS9HVPbpCatw_jrzVBduzpwOOdc7ofQJSUpJTS7blOw2tle2ZQRRlNKV1SwI7SgRV4mjLH8GC0ILbOkKMnqFJ2F0BJCuCDZAg3PUzeaxFUt6NF8AXbDaHrzrUbjLHYNVji4Tnms301vYY8b5_HgduDxFiz4OadsjXdqjGYNQXXGzvYUjN1iC5NXXZRx5_zHOTppVBfg4leX6O3-7nX9mGxeHp7Wt5tE85KPCeNFTlVGCt2sGCciVxWvo8FZUVGhap3lgivgVQOiYmVRKsYgo6wQudA153yJrubdwbvPCcIoWzd5G09KJnieE0pJFlPZnNLeheChkYM3vfJ7SYk80JWt_KMrD3TlTDcWb-YixB--DHgZtIlJqI2PJGXtzH8TP9-tiAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537701106</pqid></control><display><type>article</type><title>Multi-objective optimization of a solar chimney for power generation and water desalination using neural network</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Azad, Amirreza ; Aghaei, Elika ; Jalali, Alireza ; Ahmadi, Pouria</creator><creatorcontrib>Azad, Amirreza ; Aghaei, Elika ; Jalali, Alireza ; Ahmadi, Pouria</creatorcontrib><description>•A hybrid solar chimney is investigated for power generation and water desalination.•Neural networks are trained to predict turbine velocity and water evaporation rate.•Multi-objective optimization is used to maximize the production of power and water.•Geometrical parameters of the system including curvature parameters are optimized.•The most optimal point provides 719 kW of power and 14.28 kg.s-1 of water. Given that the initial cost of constructing a solar chimney system is high, the multi-purpose use of this system for power generation and freshwater production from seawater is vital to make the system economically feasible. To achieve the best balance between the turbine power generation and freshwater production, the optimization of design parameters such as collector’s height and diameter, chimney’s height and diameter, and the curvature of the outer wall of the chimney is necessary. Also, due to the high volume of calculations required for the numerical simulation of any arrangement of parameters, a neural network for the prediction of the output quantities is advantageous. Therefore, a perceptron neural network with two hidden layers has been implemented to predict the average temperature on the collector’s surface and the average air velocity at the turbine inlet to calculate total power and condensed water. Finally, the genetic algorithm is implemented for optimization, and the Pareto frontier is obtained for this problem. The total power generation values and freshwater production corresponding to the most optimal point are 719 kW and 14.28 kg.s-1, respectively.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2021.114152</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air temperature ; Desalination ; Design optimization ; Design parameters ; Genetic algorithm ; Genetic algorithms ; Mathematical models ; Multi-layer perceptron ; Multiple objective analysis ; Neural network ; Neural networks ; Optimization ; Pareto frontier ; Pareto optimization ; Seawater ; Solar chimney ; Solar chimneys ; Solar power ; Turbines</subject><ispartof>Energy conversion and management, 2021-06, Vol.238, p.114152, Article 114152</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-23871a608cf423057ab3d1a6328b15adc6753ae3bfe5b2989a22e6128575cd333</citedby><cites>FETCH-LOGICAL-c393t-23871a608cf423057ab3d1a6328b15adc6753ae3bfe5b2989a22e6128575cd333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890421003289$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Azad, Amirreza</creatorcontrib><creatorcontrib>Aghaei, Elika</creatorcontrib><creatorcontrib>Jalali, Alireza</creatorcontrib><creatorcontrib>Ahmadi, Pouria</creatorcontrib><title>Multi-objective optimization of a solar chimney for power generation and water desalination using neural network</title><title>Energy conversion and management</title><description>•A hybrid solar chimney is investigated for power generation and water desalination.•Neural networks are trained to predict turbine velocity and water evaporation rate.•Multi-objective optimization is used to maximize the production of power and water.•Geometrical parameters of the system including curvature parameters are optimized.•The most optimal point provides 719 kW of power and 14.28 kg.s-1 of water. Given that the initial cost of constructing a solar chimney system is high, the multi-purpose use of this system for power generation and freshwater production from seawater is vital to make the system economically feasible. To achieve the best balance between the turbine power generation and freshwater production, the optimization of design parameters such as collector’s height and diameter, chimney’s height and diameter, and the curvature of the outer wall of the chimney is necessary. Also, due to the high volume of calculations required for the numerical simulation of any arrangement of parameters, a neural network for the prediction of the output quantities is advantageous. Therefore, a perceptron neural network with two hidden layers has been implemented to predict the average temperature on the collector’s surface and the average air velocity at the turbine inlet to calculate total power and condensed water. Finally, the genetic algorithm is implemented for optimization, and the Pareto frontier is obtained for this problem. The total power generation values and freshwater production corresponding to the most optimal point are 719 kW and 14.28 kg.s-1, respectively.</description><subject>Air temperature</subject><subject>Desalination</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Mathematical models</subject><subject>Multi-layer perceptron</subject><subject>Multiple objective analysis</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pareto frontier</subject><subject>Pareto optimization</subject><subject>Seawater</subject><subject>Solar chimney</subject><subject>Solar chimneys</subject><subject>Solar power</subject><subject>Turbines</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BQm4bs1j0sdOGXzBiBtdhzS9HVPbpCatw_jrzVBduzpwOOdc7ofQJSUpJTS7blOw2tle2ZQRRlNKV1SwI7SgRV4mjLH8GC0ILbOkKMnqFJ2F0BJCuCDZAg3PUzeaxFUt6NF8AXbDaHrzrUbjLHYNVji4Tnms301vYY8b5_HgduDxFiz4OadsjXdqjGYNQXXGzvYUjN1iC5NXXZRx5_zHOTppVBfg4leX6O3-7nX9mGxeHp7Wt5tE85KPCeNFTlVGCt2sGCciVxWvo8FZUVGhap3lgivgVQOiYmVRKsYgo6wQudA153yJrubdwbvPCcIoWzd5G09KJnieE0pJFlPZnNLeheChkYM3vfJ7SYk80JWt_KMrD3TlTDcWb-YixB--DHgZtIlJqI2PJGXtzH8TP9-tiAo</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Azad, Amirreza</creator><creator>Aghaei, Elika</creator><creator>Jalali, Alireza</creator><creator>Ahmadi, Pouria</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210615</creationdate><title>Multi-objective optimization of a solar chimney for power generation and water desalination using neural network</title><author>Azad, Amirreza ; Aghaei, Elika ; Jalali, Alireza ; Ahmadi, Pouria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-23871a608cf423057ab3d1a6328b15adc6753ae3bfe5b2989a22e6128575cd333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Desalination</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Mathematical models</topic><topic>Multi-layer perceptron</topic><topic>Multiple objective analysis</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pareto frontier</topic><topic>Pareto optimization</topic><topic>Seawater</topic><topic>Solar chimney</topic><topic>Solar chimneys</topic><topic>Solar power</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azad, Amirreza</creatorcontrib><creatorcontrib>Aghaei, Elika</creatorcontrib><creatorcontrib>Jalali, Alireza</creatorcontrib><creatorcontrib>Ahmadi, Pouria</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azad, Amirreza</au><au>Aghaei, Elika</au><au>Jalali, Alireza</au><au>Ahmadi, Pouria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimization of a solar chimney for power generation and water desalination using neural network</atitle><jtitle>Energy conversion and management</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>238</volume><spage>114152</spage><pages>114152-</pages><artnum>114152</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•A hybrid solar chimney is investigated for power generation and water desalination.•Neural networks are trained to predict turbine velocity and water evaporation rate.•Multi-objective optimization is used to maximize the production of power and water.•Geometrical parameters of the system including curvature parameters are optimized.•The most optimal point provides 719 kW of power and 14.28 kg.s-1 of water. Given that the initial cost of constructing a solar chimney system is high, the multi-purpose use of this system for power generation and freshwater production from seawater is vital to make the system economically feasible. To achieve the best balance between the turbine power generation and freshwater production, the optimization of design parameters such as collector’s height and diameter, chimney’s height and diameter, and the curvature of the outer wall of the chimney is necessary. Also, due to the high volume of calculations required for the numerical simulation of any arrangement of parameters, a neural network for the prediction of the output quantities is advantageous. Therefore, a perceptron neural network with two hidden layers has been implemented to predict the average temperature on the collector’s surface and the average air velocity at the turbine inlet to calculate total power and condensed water. Finally, the genetic algorithm is implemented for optimization, and the Pareto frontier is obtained for this problem. The total power generation values and freshwater production corresponding to the most optimal point are 719 kW and 14.28 kg.s-1, respectively.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2021.114152</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2021-06, Vol.238, p.114152, Article 114152
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2537701106
source ScienceDirect Journals (5 years ago - present)
subjects Air temperature
Desalination
Design optimization
Design parameters
Genetic algorithm
Genetic algorithms
Mathematical models
Multi-layer perceptron
Multiple objective analysis
Neural network
Neural networks
Optimization
Pareto frontier
Pareto optimization
Seawater
Solar chimney
Solar chimneys
Solar power
Turbines
title Multi-objective optimization of a solar chimney for power generation and water desalination using neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimization%20of%20a%20solar%20chimney%20for%20power%20generation%20and%20water%20desalination%20using%20neural%20network&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Azad,%20Amirreza&rft.date=2021-06-15&rft.volume=238&rft.spage=114152&rft.pages=114152-&rft.artnum=114152&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2021.114152&rft_dat=%3Cproquest_cross%3E2537701106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537701106&rft_id=info:pmid/&rft_els_id=S0196890421003289&rfr_iscdi=true