Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming
District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization mod...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2021-07, Vol.226, p.120384, Article 120384 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120384 |
container_title | Energy (Oxford) |
container_volume | 226 |
creator | Hering, Dominik Xhonneux, André Müller, Dirk |
description | District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.
•Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated. |
doi_str_mv | 10.1016/j.energy.2021.120384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537697453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544221006332</els_id><sourcerecordid>2537697453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c53784c4ecaa2ee2e73701a0ed3d1c74d1094367687cff64b5a9d3362d6db41e3</originalsourceid><addsrcrecordid>eNp9kEFv3CAQhVGVSt1s-w96QMrZGzAY7EukKk2bSCvl0p4RC2MvWxs7gLPZ9s-XjXPOafQ0773RfAh9pWRDCRXXhw14CN1pU5KSbmhJWM0_oBWtJSuErKsLtCJMkKLivPyELmM8EEKqumlW6N93iK7zeJySG9xfndyYRYs13kMWvsMe0nEMf_DRpT0e5j65qYfXLZ7mYYp4jmfb4F7AYucTdBDw06xtyHmj-_6EzehjCtr57JjC2AU9DDnzGX1sdR_hy9tco98_7n7d3hfbx58Pt9-2hWGMp8JUTNbccDBalwAlSCYJ1QQss9RIbilpOBNS1NK0reC7SjeWMVFaYXecAlujq6U3336aISZ1GOfg80lV5m7RSF6x7OKLy4QxxgCtmoIbdDgpStQZszqoBbM6Y1YL5hy7WWKQP3h2EFQ0DrwB6wKYpOzo3i_4D13yi0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537697453</pqid></control><display><type>article</type><title>Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hering, Dominik ; Xhonneux, André ; Müller, Dirk</creator><creatorcontrib>Hering, Dominik ; Xhonneux, André ; Müller, Dirk</creatorcontrib><description>District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.
•Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.120384</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Carbon dioxide ; Carbon dioxide emissions ; Case studies ; Constraints ; Design ; Design optimization ; District heating ; Ecological effects ; Energy flow ; Flow rates ; Heat ; Heat exchangers ; Heat pump ; Heat pumps ; Low temperature ; Low temperature district heating ; Mass flow rate ; MIQCP ; Mixed integer ; Optimization ; Waste heat</subject><ispartof>Energy (Oxford), 2021-07, Vol.226, p.120384, Article 120384</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c53784c4ecaa2ee2e73701a0ed3d1c74d1094367687cff64b5a9d3362d6db41e3</citedby><cites>FETCH-LOGICAL-c334t-c53784c4ecaa2ee2e73701a0ed3d1c74d1094367687cff64b5a9d3362d6db41e3</cites><orcidid>0000-0001-6460-1954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2021.120384$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hering, Dominik</creatorcontrib><creatorcontrib>Xhonneux, André</creatorcontrib><creatorcontrib>Müller, Dirk</creatorcontrib><title>Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming</title><title>Energy (Oxford)</title><description>District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.
•Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Case studies</subject><subject>Constraints</subject><subject>Design</subject><subject>Design optimization</subject><subject>District heating</subject><subject>Ecological effects</subject><subject>Energy flow</subject><subject>Flow rates</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Heat pump</subject><subject>Heat pumps</subject><subject>Low temperature</subject><subject>Low temperature district heating</subject><subject>Mass flow rate</subject><subject>MIQCP</subject><subject>Mixed integer</subject><subject>Optimization</subject><subject>Waste heat</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv3CAQhVGVSt1s-w96QMrZGzAY7EukKk2bSCvl0p4RC2MvWxs7gLPZ9s-XjXPOafQ0773RfAh9pWRDCRXXhw14CN1pU5KSbmhJWM0_oBWtJSuErKsLtCJMkKLivPyELmM8EEKqumlW6N93iK7zeJySG9xfndyYRYs13kMWvsMe0nEMf_DRpT0e5j65qYfXLZ7mYYp4jmfb4F7AYucTdBDw06xtyHmj-_6EzehjCtr57JjC2AU9DDnzGX1sdR_hy9tco98_7n7d3hfbx58Pt9-2hWGMp8JUTNbccDBalwAlSCYJ1QQss9RIbilpOBNS1NK0reC7SjeWMVFaYXecAlujq6U3336aISZ1GOfg80lV5m7RSF6x7OKLy4QxxgCtmoIbdDgpStQZszqoBbM6Y1YL5hy7WWKQP3h2EFQ0DrwB6wKYpOzo3i_4D13yi0A</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Hering, Dominik</creator><creator>Xhonneux, André</creator><creator>Müller, Dirk</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6460-1954</orcidid></search><sort><creationdate>20210701</creationdate><title>Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming</title><author>Hering, Dominik ; Xhonneux, André ; Müller, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c53784c4ecaa2ee2e73701a0ed3d1c74d1094367687cff64b5a9d3362d6db41e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Case studies</topic><topic>Constraints</topic><topic>Design</topic><topic>Design optimization</topic><topic>District heating</topic><topic>Ecological effects</topic><topic>Energy flow</topic><topic>Flow rates</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Heat pump</topic><topic>Heat pumps</topic><topic>Low temperature</topic><topic>Low temperature district heating</topic><topic>Mass flow rate</topic><topic>MIQCP</topic><topic>Mixed integer</topic><topic>Optimization</topic><topic>Waste heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hering, Dominik</creatorcontrib><creatorcontrib>Xhonneux, André</creatorcontrib><creatorcontrib>Müller, Dirk</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hering, Dominik</au><au>Xhonneux, André</au><au>Müller, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming</atitle><jtitle>Energy (Oxford)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>226</volume><spage>120384</spage><pages>120384-</pages><artnum>120384</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.
•Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.120384</doi><orcidid>https://orcid.org/0000-0001-6460-1954</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2021-07, Vol.226, p.120384, Article 120384 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2537697453 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon dioxide Carbon dioxide emissions Case studies Constraints Design Design optimization District heating Ecological effects Energy flow Flow rates Heat Heat exchangers Heat pump Heat pumps Low temperature Low temperature district heating Mass flow rate MIQCP Mixed integer Optimization Waste heat |
title | Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20optimization%20of%20a%20heating%20network%20with%20multiple%20heat%20pumps%20using%20mixed%20integer%20quadratically%20constrained%20programming&rft.jtitle=Energy%20(Oxford)&rft.au=Hering,%20Dominik&rft.date=2021-07-01&rft.volume=226&rft.spage=120384&rft.pages=120384-&rft.artnum=120384&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.120384&rft_dat=%3Cproquest_cross%3E2537697453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537697453&rft_id=info:pmid/&rft_els_id=S0360544221006332&rfr_iscdi=true |