Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming

District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2021-07, Vol.226, p.120384, Article 120384
Hauptverfasser: Hering, Dominik, Xhonneux, André, Müller, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120384
container_title Energy (Oxford)
container_volume 226
creator Hering, Dominik
Xhonneux, André
Müller, Dirk
description District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study. •Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated.
doi_str_mv 10.1016/j.energy.2021.120384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537697453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544221006332</els_id><sourcerecordid>2537697453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c53784c4ecaa2ee2e73701a0ed3d1c74d1094367687cff64b5a9d3362d6db41e3</originalsourceid><addsrcrecordid>eNp9kEFv3CAQhVGVSt1s-w96QMrZGzAY7EukKk2bSCvl0p4RC2MvWxs7gLPZ9s-XjXPOafQ0773RfAh9pWRDCRXXhw14CN1pU5KSbmhJWM0_oBWtJSuErKsLtCJMkKLivPyELmM8EEKqumlW6N93iK7zeJySG9xfndyYRYs13kMWvsMe0nEMf_DRpT0e5j65qYfXLZ7mYYp4jmfb4F7AYucTdBDw06xtyHmj-_6EzehjCtr57JjC2AU9DDnzGX1sdR_hy9tco98_7n7d3hfbx58Pt9-2hWGMp8JUTNbccDBalwAlSCYJ1QQss9RIbilpOBNS1NK0reC7SjeWMVFaYXecAlujq6U3336aISZ1GOfg80lV5m7RSF6x7OKLy4QxxgCtmoIbdDgpStQZszqoBbM6Y1YL5hy7WWKQP3h2EFQ0DrwB6wKYpOzo3i_4D13yi0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537697453</pqid></control><display><type>article</type><title>Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hering, Dominik ; Xhonneux, André ; Müller, Dirk</creator><creatorcontrib>Hering, Dominik ; Xhonneux, André ; Müller, Dirk</creatorcontrib><description>District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study. •Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2021.120384</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Carbon dioxide ; Carbon dioxide emissions ; Case studies ; Constraints ; Design ; Design optimization ; District heating ; Ecological effects ; Energy flow ; Flow rates ; Heat ; Heat exchangers ; Heat pump ; Heat pumps ; Low temperature ; Low temperature district heating ; Mass flow rate ; MIQCP ; Mixed integer ; Optimization ; Waste heat</subject><ispartof>Energy (Oxford), 2021-07, Vol.226, p.120384, Article 120384</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c53784c4ecaa2ee2e73701a0ed3d1c74d1094367687cff64b5a9d3362d6db41e3</citedby><cites>FETCH-LOGICAL-c334t-c53784c4ecaa2ee2e73701a0ed3d1c74d1094367687cff64b5a9d3362d6db41e3</cites><orcidid>0000-0001-6460-1954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2021.120384$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hering, Dominik</creatorcontrib><creatorcontrib>Xhonneux, André</creatorcontrib><creatorcontrib>Müller, Dirk</creatorcontrib><title>Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming</title><title>Energy (Oxford)</title><description>District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study. •Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Case studies</subject><subject>Constraints</subject><subject>Design</subject><subject>Design optimization</subject><subject>District heating</subject><subject>Ecological effects</subject><subject>Energy flow</subject><subject>Flow rates</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Heat pump</subject><subject>Heat pumps</subject><subject>Low temperature</subject><subject>Low temperature district heating</subject><subject>Mass flow rate</subject><subject>MIQCP</subject><subject>Mixed integer</subject><subject>Optimization</subject><subject>Waste heat</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv3CAQhVGVSt1s-w96QMrZGzAY7EukKk2bSCvl0p4RC2MvWxs7gLPZ9s-XjXPOafQ0773RfAh9pWRDCRXXhw14CN1pU5KSbmhJWM0_oBWtJSuErKsLtCJMkKLivPyELmM8EEKqumlW6N93iK7zeJySG9xfndyYRYs13kMWvsMe0nEMf_DRpT0e5j65qYfXLZ7mYYp4jmfb4F7AYucTdBDw06xtyHmj-_6EzehjCtr57JjC2AU9DDnzGX1sdR_hy9tco98_7n7d3hfbx58Pt9-2hWGMp8JUTNbccDBalwAlSCYJ1QQss9RIbilpOBNS1NK0reC7SjeWMVFaYXecAlujq6U3336aISZ1GOfg80lV5m7RSF6x7OKLy4QxxgCtmoIbdDgpStQZszqoBbM6Y1YL5hy7WWKQP3h2EFQ0DrwB6wKYpOzo3i_4D13yi0A</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Hering, Dominik</creator><creator>Xhonneux, André</creator><creator>Müller, Dirk</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6460-1954</orcidid></search><sort><creationdate>20210701</creationdate><title>Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming</title><author>Hering, Dominik ; Xhonneux, André ; Müller, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c53784c4ecaa2ee2e73701a0ed3d1c74d1094367687cff64b5a9d3362d6db41e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Case studies</topic><topic>Constraints</topic><topic>Design</topic><topic>Design optimization</topic><topic>District heating</topic><topic>Ecological effects</topic><topic>Energy flow</topic><topic>Flow rates</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Heat pump</topic><topic>Heat pumps</topic><topic>Low temperature</topic><topic>Low temperature district heating</topic><topic>Mass flow rate</topic><topic>MIQCP</topic><topic>Mixed integer</topic><topic>Optimization</topic><topic>Waste heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hering, Dominik</creatorcontrib><creatorcontrib>Xhonneux, André</creatorcontrib><creatorcontrib>Müller, Dirk</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hering, Dominik</au><au>Xhonneux, André</au><au>Müller, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming</atitle><jtitle>Energy (Oxford)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>226</volume><spage>120384</spage><pages>120384-</pages><artnum>120384</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study. •Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2021.120384</doi><orcidid>https://orcid.org/0000-0001-6460-1954</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2021-07, Vol.226, p.120384, Article 120384
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2537697453
source Access via ScienceDirect (Elsevier)
subjects Carbon dioxide
Carbon dioxide emissions
Case studies
Constraints
Design
Design optimization
District heating
Ecological effects
Energy flow
Flow rates
Heat
Heat exchangers
Heat pump
Heat pumps
Low temperature
Low temperature district heating
Mass flow rate
MIQCP
Mixed integer
Optimization
Waste heat
title Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20optimization%20of%20a%20heating%20network%20with%20multiple%20heat%20pumps%20using%20mixed%20integer%20quadratically%20constrained%20programming&rft.jtitle=Energy%20(Oxford)&rft.au=Hering,%20Dominik&rft.date=2021-07-01&rft.volume=226&rft.spage=120384&rft.pages=120384-&rft.artnum=120384&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2021.120384&rft_dat=%3Cproquest_cross%3E2537697453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537697453&rft_id=info:pmid/&rft_els_id=S0360544221006332&rfr_iscdi=true