Soil texture prediction via reduced K-means Principal Component Multinomial Regression
Texture is one of the most important physical property of the soils for its influence on other fundamental properties. It is defined according to particle size distribution, that can be accurately measured in laboratory. However, these measurements are costly and very time consuming, therefore valid...
Gespeichert in:
Veröffentlicht in: | Socio-economic planning sciences 2021-06, Vol.75, p.100871, Article 100871 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 100871 |
container_title | Socio-economic planning sciences |
container_volume | 75 |
creator | Lucadamo, Antonio Amenta, Pietro Leone, Natalia |
description | Texture is one of the most important physical property of the soils for its influence on other fundamental properties. It is defined according to particle size distribution, that can be accurately measured in laboratory. However, these measurements are costly and very time consuming, therefore valid alternatives are necessary. In last years some statistical techniques have been used to predict textural classification using values of reflectance spectrometry as explicative variables. The estimation of the model parameters can be not too accurate, affecting prediction when there is multicollinearity among predictors. Another issue can be the great number of explicative variables usually necessary to explain the response. In order to improve the accuracy of the prediction in classification problems under multicollinearity and to reduce the dimension of the problem with continuous covariates, in this paper we introduce a new technique, based on classification and dimension reduction methods. We show how the new proposal can improve the accuracy of prediction, considering a problem concerning the textural classification of soils of Campania region.
•Texture is an important soil property influencing other fundamental properties.•Prediction of textural classification using reflectance spectrometry.•A new statistical method to solve multicollinearity and improve classification rate. |
doi_str_mv | 10.1016/j.seps.2020.100871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537695809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038012119304793</els_id><sourcerecordid>2537695809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6d34896b1acaa175fd110c7f537554591a2180b798389978fc7f470259c6280e3</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouK7-AZ8KPnedpJck4Iss3lBRvL2GbDqVlG1Tk3bRf29KffZpmJlzzgwfIacUVhRoed6sAvZhxYBNAxCc7pEFFTxLS8jpPlkAZCIFyughOQqhAQCWs2JBPl6d3SYDfg-jx6T3WFkzWNclO6uT2I0Gq-Q-bVF3IXn2tjO219tk7dreddgNyeO4HWznWhunL_jpMYRoPyYHtd4GPPmrS_J-ffW2vk0fnm7u1pcPqcnyfEjLKsuFLDdUG60pL-qKUjC8LjJeFHkhqWZUwIZLkQkpuajjLufACmlKJgCzJTmbc3vvvkYMg2rc6Lt4UrEYUspCgIwqNquMdyF4rFXvbav9j6KgJn6qURM_NfFTM79ouphNGP_fWfQqGItd5GE9mkFVzv5n_wW0kHhm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537695809</pqid></control><display><type>article</type><title>Soil texture prediction via reduced K-means Principal Component Multinomial Regression</title><source>Elsevier ScienceDirect Journals</source><creator>Lucadamo, Antonio ; Amenta, Pietro ; Leone, Natalia</creator><creatorcontrib>Lucadamo, Antonio ; Amenta, Pietro ; Leone, Natalia</creatorcontrib><description>Texture is one of the most important physical property of the soils for its influence on other fundamental properties. It is defined according to particle size distribution, that can be accurately measured in laboratory. However, these measurements are costly and very time consuming, therefore valid alternatives are necessary. In last years some statistical techniques have been used to predict textural classification using values of reflectance spectrometry as explicative variables. The estimation of the model parameters can be not too accurate, affecting prediction when there is multicollinearity among predictors. Another issue can be the great number of explicative variables usually necessary to explain the response. In order to improve the accuracy of the prediction in classification problems under multicollinearity and to reduce the dimension of the problem with continuous covariates, in this paper we introduce a new technique, based on classification and dimension reduction methods. We show how the new proposal can improve the accuracy of prediction, considering a problem concerning the textural classification of soils of Campania region.
•Texture is an important soil property influencing other fundamental properties.•Prediction of textural classification using reflectance spectrometry.•A new statistical method to solve multicollinearity and improve classification rate.</description><identifier>ISSN: 0038-0121</identifier><identifier>EISSN: 1873-6041</identifier><identifier>DOI: 10.1016/j.seps.2020.100871</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Chemiometry ; Classification ; K-means ; Multicollinearity ; Multinomial logit model ; Particle size ; Principal components analysis ; Reflectance ; Scientific imaging ; Soil texture ; Soils ; Spectrometry ; Texture</subject><ispartof>Socio-economic planning sciences, 2021-06, Vol.75, p.100871, Article 100871</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-6d34896b1acaa175fd110c7f537554591a2180b798389978fc7f470259c6280e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038012119304793$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lucadamo, Antonio</creatorcontrib><creatorcontrib>Amenta, Pietro</creatorcontrib><creatorcontrib>Leone, Natalia</creatorcontrib><title>Soil texture prediction via reduced K-means Principal Component Multinomial Regression</title><title>Socio-economic planning sciences</title><description>Texture is one of the most important physical property of the soils for its influence on other fundamental properties. It is defined according to particle size distribution, that can be accurately measured in laboratory. However, these measurements are costly and very time consuming, therefore valid alternatives are necessary. In last years some statistical techniques have been used to predict textural classification using values of reflectance spectrometry as explicative variables. The estimation of the model parameters can be not too accurate, affecting prediction when there is multicollinearity among predictors. Another issue can be the great number of explicative variables usually necessary to explain the response. In order to improve the accuracy of the prediction in classification problems under multicollinearity and to reduce the dimension of the problem with continuous covariates, in this paper we introduce a new technique, based on classification and dimension reduction methods. We show how the new proposal can improve the accuracy of prediction, considering a problem concerning the textural classification of soils of Campania region.
•Texture is an important soil property influencing other fundamental properties.•Prediction of textural classification using reflectance spectrometry.•A new statistical method to solve multicollinearity and improve classification rate.</description><subject>Chemiometry</subject><subject>Classification</subject><subject>K-means</subject><subject>Multicollinearity</subject><subject>Multinomial logit model</subject><subject>Particle size</subject><subject>Principal components analysis</subject><subject>Reflectance</subject><subject>Scientific imaging</subject><subject>Soil texture</subject><subject>Soils</subject><subject>Spectrometry</subject><subject>Texture</subject><issn>0038-0121</issn><issn>1873-6041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLxDAQhYMouK7-AZ8KPnedpJck4Iss3lBRvL2GbDqVlG1Tk3bRf29KffZpmJlzzgwfIacUVhRoed6sAvZhxYBNAxCc7pEFFTxLS8jpPlkAZCIFyughOQqhAQCWs2JBPl6d3SYDfg-jx6T3WFkzWNclO6uT2I0Gq-Q-bVF3IXn2tjO219tk7dreddgNyeO4HWznWhunL_jpMYRoPyYHtd4GPPmrS_J-ffW2vk0fnm7u1pcPqcnyfEjLKsuFLDdUG60pL-qKUjC8LjJeFHkhqWZUwIZLkQkpuajjLufACmlKJgCzJTmbc3vvvkYMg2rc6Lt4UrEYUspCgIwqNquMdyF4rFXvbav9j6KgJn6qURM_NfFTM79ouphNGP_fWfQqGItd5GE9mkFVzv5n_wW0kHhm</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lucadamo, Antonio</creator><creator>Amenta, Pietro</creator><creator>Leone, Natalia</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20210601</creationdate><title>Soil texture prediction via reduced K-means Principal Component Multinomial Regression</title><author>Lucadamo, Antonio ; Amenta, Pietro ; Leone, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6d34896b1acaa175fd110c7f537554591a2180b798389978fc7f470259c6280e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemiometry</topic><topic>Classification</topic><topic>K-means</topic><topic>Multicollinearity</topic><topic>Multinomial logit model</topic><topic>Particle size</topic><topic>Principal components analysis</topic><topic>Reflectance</topic><topic>Scientific imaging</topic><topic>Soil texture</topic><topic>Soils</topic><topic>Spectrometry</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucadamo, Antonio</creatorcontrib><creatorcontrib>Amenta, Pietro</creatorcontrib><creatorcontrib>Leone, Natalia</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Socio-economic planning sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucadamo, Antonio</au><au>Amenta, Pietro</au><au>Leone, Natalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil texture prediction via reduced K-means Principal Component Multinomial Regression</atitle><jtitle>Socio-economic planning sciences</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>75</volume><spage>100871</spage><pages>100871-</pages><artnum>100871</artnum><issn>0038-0121</issn><eissn>1873-6041</eissn><abstract>Texture is one of the most important physical property of the soils for its influence on other fundamental properties. It is defined according to particle size distribution, that can be accurately measured in laboratory. However, these measurements are costly and very time consuming, therefore valid alternatives are necessary. In last years some statistical techniques have been used to predict textural classification using values of reflectance spectrometry as explicative variables. The estimation of the model parameters can be not too accurate, affecting prediction when there is multicollinearity among predictors. Another issue can be the great number of explicative variables usually necessary to explain the response. In order to improve the accuracy of the prediction in classification problems under multicollinearity and to reduce the dimension of the problem with continuous covariates, in this paper we introduce a new technique, based on classification and dimension reduction methods. We show how the new proposal can improve the accuracy of prediction, considering a problem concerning the textural classification of soils of Campania region.
•Texture is an important soil property influencing other fundamental properties.•Prediction of textural classification using reflectance spectrometry.•A new statistical method to solve multicollinearity and improve classification rate.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.seps.2020.100871</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0121 |
ispartof | Socio-economic planning sciences, 2021-06, Vol.75, p.100871, Article 100871 |
issn | 0038-0121 1873-6041 |
language | eng |
recordid | cdi_proquest_journals_2537695809 |
source | Elsevier ScienceDirect Journals |
subjects | Chemiometry Classification K-means Multicollinearity Multinomial logit model Particle size Principal components analysis Reflectance Scientific imaging Soil texture Soils Spectrometry Texture |
title | Soil texture prediction via reduced K-means Principal Component Multinomial Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20texture%20prediction%20via%20reduced%20K-means%20Principal%20Component%20Multinomial%20Regression&rft.jtitle=Socio-economic%20planning%20sciences&rft.au=Lucadamo,%20Antonio&rft.date=2021-06-01&rft.volume=75&rft.spage=100871&rft.pages=100871-&rft.artnum=100871&rft.issn=0038-0121&rft.eissn=1873-6041&rft_id=info:doi/10.1016/j.seps.2020.100871&rft_dat=%3Cproquest_cross%3E2537695809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537695809&rft_id=info:pmid/&rft_els_id=S0038012119304793&rfr_iscdi=true |