Geometric Rényi Divergence and its Applications in Quantum Channel Capacities

Having a distance measure between quantum states satisfying the right properties is of fundamental importance in all areas of quantum information. In this work, we present a systematic study of the geometric Rényi divergence (GRD), also known as the maximal Rényi divergence, from the point of view o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-06, Vol.384 (3), p.1615-1677
Hauptverfasser: Fang, Kun, Fawzi, Hamza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1677
container_issue 3
container_start_page 1615
container_title Communications in mathematical physics
container_volume 384
creator Fang, Kun
Fawzi, Hamza
description Having a distance measure between quantum states satisfying the right properties is of fundamental importance in all areas of quantum information. In this work, we present a systematic study of the geometric Rényi divergence (GRD), also known as the maximal Rényi divergence, from the point of view of quantum information theory. We show that this divergence, together with its extension to channels, has many appealing structural properties, which are not satisfied by other quantum Rényi divergences. For example we prove a chain rule inequality that immediately implies the “amortization collapse” for the geometric Rényi divergence, addressing an open question by Berta et al. [Letters in Mathematical Physics 110:2277–2336, 2020, Equation (55)] in the area of quantum channel discrimination. As applications, we explore various channel capacity problems and construct new channel information measures based on the geometric Rényi divergence, sharpening the previously best-known bounds based on the max-relative entropy while still keeping the new bounds single-letter and efficiently computable. A plethora of examples are investigated and the improvements are evident for almost all cases.
doi_str_mv 10.1007/s00220-021-04064-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537681443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537681443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-687b73317756127c79dab8bd6ec502d4c798b58795b37e7ad6e90870812c72343</originalsourceid><addsrcrecordid>eNp9kN9KwzAUh4MoOKcv4FXA6-jJnybt5ag6haEoeh3SNJsZW1qTVtgj-Ry-mJ0VvPPqwDnf73fgQ-icwiUFUFcJgDEgwCgBAVIQcYAmVHBGoKDyEE0AKBAuqTxGJymtAaBgUk7Qw9w1W9dFb_Hz12fYeXztP1xcuWAdNqHGvkt41rYbb03nm5CwD_ipN6Hrt7h8MyG4DS5Na6zvvEun6GhpNsmd_c4per29eSnvyOJxfl_OFsRyyTsic1UpzqlSmaRMWVXUpsqrWjqbAavFsMirLFdFVnHllBkOBeQKcsqsYlzwKboYe9vYvPcudXrd9DEMLzXLuJI5FYIPFBspG5uUolvqNvqtiTtNQe-96dGbHrzpH296X83HUBrgsHLxr_qf1DebI29K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537681443</pqid></control><display><type>article</type><title>Geometric Rényi Divergence and its Applications in Quantum Channel Capacities</title><source>SpringerLink Journals</source><creator>Fang, Kun ; Fawzi, Hamza</creator><creatorcontrib>Fang, Kun ; Fawzi, Hamza</creatorcontrib><description>Having a distance measure between quantum states satisfying the right properties is of fundamental importance in all areas of quantum information. In this work, we present a systematic study of the geometric Rényi divergence (GRD), also known as the maximal Rényi divergence, from the point of view of quantum information theory. We show that this divergence, together with its extension to channels, has many appealing structural properties, which are not satisfied by other quantum Rényi divergences. For example we prove a chain rule inequality that immediately implies the “amortization collapse” for the geometric Rényi divergence, addressing an open question by Berta et al. [Letters in Mathematical Physics 110:2277–2336, 2020, Equation (55)] in the area of quantum channel discrimination. As applications, we explore various channel capacity problems and construct new channel information measures based on the geometric Rényi divergence, sharpening the previously best-known bounds based on the max-relative entropy while still keeping the new bounds single-letter and efficiently computable. A plethora of examples are investigated and the improvements are evident for almost all cases.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04064-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Channel capacity ; Classical and Quantum Gravitation ; Complex Systems ; Distance measurement ; Information theory ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum computing ; Quantum phenomena ; Quantum Physics ; Relativity Theory ; Sharpening ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-06, Vol.384 (3), p.1615-1677</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-687b73317756127c79dab8bd6ec502d4c798b58795b37e7ad6e90870812c72343</citedby><cites>FETCH-LOGICAL-c363t-687b73317756127c79dab8bd6ec502d4c798b58795b37e7ad6e90870812c72343</cites><orcidid>0000-0001-6026-4102 ; 0000-0002-9232-6846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-021-04064-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-021-04064-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fang, Kun</creatorcontrib><creatorcontrib>Fawzi, Hamza</creatorcontrib><title>Geometric Rényi Divergence and its Applications in Quantum Channel Capacities</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>Having a distance measure between quantum states satisfying the right properties is of fundamental importance in all areas of quantum information. In this work, we present a systematic study of the geometric Rényi divergence (GRD), also known as the maximal Rényi divergence, from the point of view of quantum information theory. We show that this divergence, together with its extension to channels, has many appealing structural properties, which are not satisfied by other quantum Rényi divergences. For example we prove a chain rule inequality that immediately implies the “amortization collapse” for the geometric Rényi divergence, addressing an open question by Berta et al. [Letters in Mathematical Physics 110:2277–2336, 2020, Equation (55)] in the area of quantum channel discrimination. As applications, we explore various channel capacity problems and construct new channel information measures based on the geometric Rényi divergence, sharpening the previously best-known bounds based on the max-relative entropy while still keeping the new bounds single-letter and efficiently computable. A plethora of examples are investigated and the improvements are evident for almost all cases.</description><subject>Channel capacity</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Distance measurement</subject><subject>Information theory</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computing</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Sharpening</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kN9KwzAUh4MoOKcv4FXA6-jJnybt5ag6haEoeh3SNJsZW1qTVtgj-Ry-mJ0VvPPqwDnf73fgQ-icwiUFUFcJgDEgwCgBAVIQcYAmVHBGoKDyEE0AKBAuqTxGJymtAaBgUk7Qw9w1W9dFb_Hz12fYeXztP1xcuWAdNqHGvkt41rYbb03nm5CwD_ipN6Hrt7h8MyG4DS5Na6zvvEun6GhpNsmd_c4per29eSnvyOJxfl_OFsRyyTsic1UpzqlSmaRMWVXUpsqrWjqbAavFsMirLFdFVnHllBkOBeQKcsqsYlzwKboYe9vYvPcudXrd9DEMLzXLuJI5FYIPFBspG5uUolvqNvqtiTtNQe-96dGbHrzpH296X83HUBrgsHLxr_qf1DebI29K</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Fang, Kun</creator><creator>Fawzi, Hamza</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6026-4102</orcidid><orcidid>https://orcid.org/0000-0002-9232-6846</orcidid></search><sort><creationdate>20210601</creationdate><title>Geometric Rényi Divergence and its Applications in Quantum Channel Capacities</title><author>Fang, Kun ; Fawzi, Hamza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-687b73317756127c79dab8bd6ec502d4c798b58795b37e7ad6e90870812c72343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Channel capacity</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Distance measurement</topic><topic>Information theory</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computing</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Sharpening</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Kun</creatorcontrib><creatorcontrib>Fawzi, Hamza</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Kun</au><au>Fawzi, Hamza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Rényi Divergence and its Applications in Quantum Channel Capacities</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>384</volume><issue>3</issue><spage>1615</spage><epage>1677</epage><pages>1615-1677</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>Having a distance measure between quantum states satisfying the right properties is of fundamental importance in all areas of quantum information. In this work, we present a systematic study of the geometric Rényi divergence (GRD), also known as the maximal Rényi divergence, from the point of view of quantum information theory. We show that this divergence, together with its extension to channels, has many appealing structural properties, which are not satisfied by other quantum Rényi divergences. For example we prove a chain rule inequality that immediately implies the “amortization collapse” for the geometric Rényi divergence, addressing an open question by Berta et al. [Letters in Mathematical Physics 110:2277–2336, 2020, Equation (55)] in the area of quantum channel discrimination. As applications, we explore various channel capacity problems and construct new channel information measures based on the geometric Rényi divergence, sharpening the previously best-known bounds based on the max-relative entropy while still keeping the new bounds single-letter and efficiently computable. A plethora of examples are investigated and the improvements are evident for almost all cases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04064-4</doi><tpages>63</tpages><orcidid>https://orcid.org/0000-0001-6026-4102</orcidid><orcidid>https://orcid.org/0000-0002-9232-6846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2021-06, Vol.384 (3), p.1615-1677
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2537681443
source SpringerLink Journals
subjects Channel capacity
Classical and Quantum Gravitation
Complex Systems
Distance measurement
Information theory
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum computing
Quantum phenomena
Quantum Physics
Relativity Theory
Sharpening
Theoretical
title Geometric Rényi Divergence and its Applications in Quantum Channel Capacities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20R%C3%A9nyi%20Divergence%20and%20its%20Applications%20in%20Quantum%20Channel%20Capacities&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Fang,%20Kun&rft.date=2021-06-01&rft.volume=384&rft.issue=3&rft.spage=1615&rft.epage=1677&rft.pages=1615-1677&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04064-4&rft_dat=%3Cproquest_cross%3E2537681443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537681443&rft_id=info:pmid/&rfr_iscdi=true