Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis
Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO 2 , nuclear fuel cladding, concrete, stainless steel and other n...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-06, Vol.9 (21), p.12612-12622 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12622 |
---|---|
container_issue | 21 |
container_start_page | 12612 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Ding, Hao Dixon Wilkins, Malin C Gausse, Clémence Mottram, Lucy M Sun, Shikuan Stennett, Martin C Grolimund, Daniel Tappero, Ryan Nicholas, Sarah Hyatt, Neil C Corkhill, Claire L |
description | Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO
2
, nuclear fuel cladding, concrete, stainless steel and other nuclear reactor components, these materials behaved like lava, solidifying to form a complex, highly radioactive glass-ceramic. Using element-specific chemical probes (micro-X-ray fluorescence and X-ray absorption spectroscopy), coupled with micro-diffraction analysis, the crystalline phase assemblage of simulants of these heterogeneous materials was established, which included "chernobylite" and a range of compositions in the (U
1−
x
Zr
x
)O
2
solid solution. Novel insight to nuclear accident fuel chemistry was obtained by establishing the oxidation state and local coordination of uranium not only in these crystalline phases, but uniquely in the amorphous fraction of the material, which varied depending on the history of the nuclear lava as it flowed through the reactor. This study demonstrates that micro-focus X-ray analysis of very small fractions of material can yield rich chemical information, which can be applied to nuclear-melt down materials to aid decommissioning and nuclear fuel management at nuclear accident sites.
Multi-modal μ-focus X-ray analysis was applied to Chernobyl simulant nuclear fuel materials and insight into the role of uranium speciation in controlling its incorporation within the phase assemblage, including the amorphous phase, was achieved. |
doi_str_mv | 10.1039/d0ta09131f |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2537579448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537579448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-e61ab88d038596124c5b76c0f74a84e7a9ca14056bbc22c5d6f6ce3b25e3e0e23</originalsourceid><addsrcrecordid>eNpF0c1LwzAUAPAiCo65i3ch6E2oJk2aj-OYToWBByd6C2n2Yju6Zibtof-9nZX5Lu8dfjzeR5JcEnxHMFX3G9warAgl7iSZZDjHqWCKnx5rKc-TWYxbPITEmCs1ST7ejIO6R_vgi6r5Qm0JyJawq2IbeuQdWpQQGl_0NWo6W4MJyHVQoy4e9K6ywafO2y6izzSYHpnG1H2s4kVy5kwdYfaXp8n78nG9eE5Xr08vi_kqtVSSNgVOTCHlBlOZK04yZvNCcIudYEYyEEZZQxjOeVHYLLP5hjtugRZZDhQwZHSaXI99fWwrHW3Vgi2tbxqwrSZCCEbZgG5GNGz53UFs9dZ3YZg06iynIheKMTmo21ENO8UYwOl9qHYm9JpgfTiwfsDr-e-BlwO-GnGI9uj-H0B_AMzBdvY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537579448</pqid></control><display><type>article</type><title>Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ding, Hao ; Dixon Wilkins, Malin C ; Gausse, Clémence ; Mottram, Lucy M ; Sun, Shikuan ; Stennett, Martin C ; Grolimund, Daniel ; Tappero, Ryan ; Nicholas, Sarah ; Hyatt, Neil C ; Corkhill, Claire L</creator><creatorcontrib>Ding, Hao ; Dixon Wilkins, Malin C ; Gausse, Clémence ; Mottram, Lucy M ; Sun, Shikuan ; Stennett, Martin C ; Grolimund, Daniel ; Tappero, Ryan ; Nicholas, Sarah ; Hyatt, Neil C ; Corkhill, Claire L ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO
2
, nuclear fuel cladding, concrete, stainless steel and other nuclear reactor components, these materials behaved like lava, solidifying to form a complex, highly radioactive glass-ceramic. Using element-specific chemical probes (micro-X-ray fluorescence and X-ray absorption spectroscopy), coupled with micro-diffraction analysis, the crystalline phase assemblage of simulants of these heterogeneous materials was established, which included "chernobylite" and a range of compositions in the (U
1−
x
Zr
x
)O
2
solid solution. Novel insight to nuclear accident fuel chemistry was obtained by establishing the oxidation state and local coordination of uranium not only in these crystalline phases, but uniquely in the amorphous fraction of the material, which varied depending on the history of the nuclear lava as it flowed through the reactor. This study demonstrates that micro-focus X-ray analysis of very small fractions of material can yield rich chemical information, which can be applied to nuclear-melt down materials to aid decommissioning and nuclear fuel management at nuclear accident sites.
Multi-modal μ-focus X-ray analysis was applied to Chernobyl simulant nuclear fuel materials and insight into the role of uranium speciation in controlling its incorporation within the phase assemblage, including the amorphous phase, was achieved.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta09131f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Amorphous materials ; Chemical analysis ; Crystal structure ; Crystallinity ; Fluorescence ; Fluorescent indicators ; Glass ceramics ; MATERIALS SCIENCE ; Nuclear accidents ; Nuclear accidents & safety ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; Nuclear fuel elements ; Nuclear fuels ; Nuclear reactor components ; Nuclear reactors ; Oxidation ; Radioactivity ; Reactors ; Solid solutions ; Stainless steel ; Stainless steels ; Uranium ; Uranium dioxide ; Valence ; X ray absorption ; X ray analysis ; X ray fluorescence analysis ; X-ray absorption spectroscopy ; X-ray fluorescence</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-06, Vol.9 (21), p.12612-12622</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-e61ab88d038596124c5b76c0f74a84e7a9ca14056bbc22c5d6f6ce3b25e3e0e23</citedby><cites>FETCH-LOGICAL-c381t-e61ab88d038596124c5b76c0f74a84e7a9ca14056bbc22c5d6f6ce3b25e3e0e23</cites><orcidid>0000-0002-1688-5072 ; 0000-0002-2491-3897 ; 0000-0001-9721-7940 ; 0000-0002-8363-9103 ; 0000-0002-3560-2461 ; 0000-0002-7488-3219 ; 0000-0003-1520-7672 ; 0000-0001-9662-4616 ; 0000000235602461 ; 0000000283639103 ; 0000000315207672 ; 0000000224913897 ; 0000000196624616 ; 0000000216885072 ; 0000000197217940 ; 0000000274883219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1777434$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Dixon Wilkins, Malin C</creatorcontrib><creatorcontrib>Gausse, Clémence</creatorcontrib><creatorcontrib>Mottram, Lucy M</creatorcontrib><creatorcontrib>Sun, Shikuan</creatorcontrib><creatorcontrib>Stennett, Martin C</creatorcontrib><creatorcontrib>Grolimund, Daniel</creatorcontrib><creatorcontrib>Tappero, Ryan</creatorcontrib><creatorcontrib>Nicholas, Sarah</creatorcontrib><creatorcontrib>Hyatt, Neil C</creatorcontrib><creatorcontrib>Corkhill, Claire L</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO
2
, nuclear fuel cladding, concrete, stainless steel and other nuclear reactor components, these materials behaved like lava, solidifying to form a complex, highly radioactive glass-ceramic. Using element-specific chemical probes (micro-X-ray fluorescence and X-ray absorption spectroscopy), coupled with micro-diffraction analysis, the crystalline phase assemblage of simulants of these heterogeneous materials was established, which included "chernobylite" and a range of compositions in the (U
1−
x
Zr
x
)O
2
solid solution. Novel insight to nuclear accident fuel chemistry was obtained by establishing the oxidation state and local coordination of uranium not only in these crystalline phases, but uniquely in the amorphous fraction of the material, which varied depending on the history of the nuclear lava as it flowed through the reactor. This study demonstrates that micro-focus X-ray analysis of very small fractions of material can yield rich chemical information, which can be applied to nuclear-melt down materials to aid decommissioning and nuclear fuel management at nuclear accident sites.
Multi-modal μ-focus X-ray analysis was applied to Chernobyl simulant nuclear fuel materials and insight into the role of uranium speciation in controlling its incorporation within the phase assemblage, including the amorphous phase, was achieved.</description><subject>Absorption spectroscopy</subject><subject>Amorphous materials</subject><subject>Chemical analysis</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>Glass ceramics</subject><subject>MATERIALS SCIENCE</subject><subject>Nuclear accidents</subject><subject>Nuclear accidents & safety</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>Nuclear fuel elements</subject><subject>Nuclear fuels</subject><subject>Nuclear reactor components</subject><subject>Nuclear reactors</subject><subject>Oxidation</subject><subject>Radioactivity</subject><subject>Reactors</subject><subject>Solid solutions</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Uranium</subject><subject>Uranium dioxide</subject><subject>Valence</subject><subject>X ray absorption</subject><subject>X ray analysis</subject><subject>X ray fluorescence analysis</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray fluorescence</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpF0c1LwzAUAPAiCo65i3ch6E2oJk2aj-OYToWBByd6C2n2Yju6Zibtof-9nZX5Lu8dfjzeR5JcEnxHMFX3G9warAgl7iSZZDjHqWCKnx5rKc-TWYxbPITEmCs1ST7ejIO6R_vgi6r5Qm0JyJawq2IbeuQdWpQQGl_0NWo6W4MJyHVQoy4e9K6ywafO2y6izzSYHpnG1H2s4kVy5kwdYfaXp8n78nG9eE5Xr08vi_kqtVSSNgVOTCHlBlOZK04yZvNCcIudYEYyEEZZQxjOeVHYLLP5hjtugRZZDhQwZHSaXI99fWwrHW3Vgi2tbxqwrSZCCEbZgG5GNGz53UFs9dZ3YZg06iynIheKMTmo21ENO8UYwOl9qHYm9JpgfTiwfsDr-e-BlwO-GnGI9uj-H0B_AMzBdvY</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Ding, Hao</creator><creator>Dixon Wilkins, Malin C</creator><creator>Gausse, Clémence</creator><creator>Mottram, Lucy M</creator><creator>Sun, Shikuan</creator><creator>Stennett, Martin C</creator><creator>Grolimund, Daniel</creator><creator>Tappero, Ryan</creator><creator>Nicholas, Sarah</creator><creator>Hyatt, Neil C</creator><creator>Corkhill, Claire L</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1688-5072</orcidid><orcidid>https://orcid.org/0000-0002-2491-3897</orcidid><orcidid>https://orcid.org/0000-0001-9721-7940</orcidid><orcidid>https://orcid.org/0000-0002-8363-9103</orcidid><orcidid>https://orcid.org/0000-0002-3560-2461</orcidid><orcidid>https://orcid.org/0000-0002-7488-3219</orcidid><orcidid>https://orcid.org/0000-0003-1520-7672</orcidid><orcidid>https://orcid.org/0000-0001-9662-4616</orcidid><orcidid>https://orcid.org/0000000235602461</orcidid><orcidid>https://orcid.org/0000000283639103</orcidid><orcidid>https://orcid.org/0000000315207672</orcidid><orcidid>https://orcid.org/0000000224913897</orcidid><orcidid>https://orcid.org/0000000196624616</orcidid><orcidid>https://orcid.org/0000000216885072</orcidid><orcidid>https://orcid.org/0000000197217940</orcidid><orcidid>https://orcid.org/0000000274883219</orcidid></search><sort><creationdate>20210607</creationdate><title>Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis</title><author>Ding, Hao ; Dixon Wilkins, Malin C ; Gausse, Clémence ; Mottram, Lucy M ; Sun, Shikuan ; Stennett, Martin C ; Grolimund, Daniel ; Tappero, Ryan ; Nicholas, Sarah ; Hyatt, Neil C ; Corkhill, Claire L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-e61ab88d038596124c5b76c0f74a84e7a9ca14056bbc22c5d6f6ce3b25e3e0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectroscopy</topic><topic>Amorphous materials</topic><topic>Chemical analysis</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>Glass ceramics</topic><topic>MATERIALS SCIENCE</topic><topic>Nuclear accidents</topic><topic>Nuclear accidents & safety</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>Nuclear fuel elements</topic><topic>Nuclear fuels</topic><topic>Nuclear reactor components</topic><topic>Nuclear reactors</topic><topic>Oxidation</topic><topic>Radioactivity</topic><topic>Reactors</topic><topic>Solid solutions</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Uranium</topic><topic>Uranium dioxide</topic><topic>Valence</topic><topic>X ray absorption</topic><topic>X ray analysis</topic><topic>X ray fluorescence analysis</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Dixon Wilkins, Malin C</creatorcontrib><creatorcontrib>Gausse, Clémence</creatorcontrib><creatorcontrib>Mottram, Lucy M</creatorcontrib><creatorcontrib>Sun, Shikuan</creatorcontrib><creatorcontrib>Stennett, Martin C</creatorcontrib><creatorcontrib>Grolimund, Daniel</creatorcontrib><creatorcontrib>Tappero, Ryan</creatorcontrib><creatorcontrib>Nicholas, Sarah</creatorcontrib><creatorcontrib>Hyatt, Neil C</creatorcontrib><creatorcontrib>Corkhill, Claire L</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Hao</au><au>Dixon Wilkins, Malin C</au><au>Gausse, Clémence</au><au>Mottram, Lucy M</au><au>Sun, Shikuan</au><au>Stennett, Martin C</au><au>Grolimund, Daniel</au><au>Tappero, Ryan</au><au>Nicholas, Sarah</au><au>Hyatt, Neil C</au><au>Corkhill, Claire L</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-06-07</date><risdate>2021</risdate><volume>9</volume><issue>21</issue><spage>12612</spage><epage>12622</epage><pages>12612-12622</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO
2
, nuclear fuel cladding, concrete, stainless steel and other nuclear reactor components, these materials behaved like lava, solidifying to form a complex, highly radioactive glass-ceramic. Using element-specific chemical probes (micro-X-ray fluorescence and X-ray absorption spectroscopy), coupled with micro-diffraction analysis, the crystalline phase assemblage of simulants of these heterogeneous materials was established, which included "chernobylite" and a range of compositions in the (U
1−
x
Zr
x
)O
2
solid solution. Novel insight to nuclear accident fuel chemistry was obtained by establishing the oxidation state and local coordination of uranium not only in these crystalline phases, but uniquely in the amorphous fraction of the material, which varied depending on the history of the nuclear lava as it flowed through the reactor. This study demonstrates that micro-focus X-ray analysis of very small fractions of material can yield rich chemical information, which can be applied to nuclear-melt down materials to aid decommissioning and nuclear fuel management at nuclear accident sites.
Multi-modal μ-focus X-ray analysis was applied to Chernobyl simulant nuclear fuel materials and insight into the role of uranium speciation in controlling its incorporation within the phase assemblage, including the amorphous phase, was achieved.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta09131f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1688-5072</orcidid><orcidid>https://orcid.org/0000-0002-2491-3897</orcidid><orcidid>https://orcid.org/0000-0001-9721-7940</orcidid><orcidid>https://orcid.org/0000-0002-8363-9103</orcidid><orcidid>https://orcid.org/0000-0002-3560-2461</orcidid><orcidid>https://orcid.org/0000-0002-7488-3219</orcidid><orcidid>https://orcid.org/0000-0003-1520-7672</orcidid><orcidid>https://orcid.org/0000-0001-9662-4616</orcidid><orcidid>https://orcid.org/0000000235602461</orcidid><orcidid>https://orcid.org/0000000283639103</orcidid><orcidid>https://orcid.org/0000000315207672</orcidid><orcidid>https://orcid.org/0000000224913897</orcidid><orcidid>https://orcid.org/0000000196624616</orcidid><orcidid>https://orcid.org/0000000216885072</orcidid><orcidid>https://orcid.org/0000000197217940</orcidid><orcidid>https://orcid.org/0000000274883219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-06, Vol.9 (21), p.12612-12622 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2537579448 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Absorption spectroscopy Amorphous materials Chemical analysis Crystal structure Crystallinity Fluorescence Fluorescent indicators Glass ceramics MATERIALS SCIENCE Nuclear accidents Nuclear accidents & safety NUCLEAR FUEL CYCLE AND FUEL MATERIALS Nuclear fuel elements Nuclear fuels Nuclear reactor components Nuclear reactors Oxidation Radioactivity Reactors Solid solutions Stainless steel Stainless steels Uranium Uranium dioxide Valence X ray absorption X ray analysis X ray fluorescence analysis X-ray absorption spectroscopy X-ray fluorescence |
title | Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safely%20probing%20the%20chemistry%20of%20Chernobyl%20nuclear%20fuel%20using%20micro-focus%20X-ray%20analysis&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ding,%20Hao&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2021-06-07&rft.volume=9&rft.issue=21&rft.spage=12612&rft.epage=12622&rft.pages=12612-12622&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta09131f&rft_dat=%3Cproquest_rsc_p%3E2537579448%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537579448&rft_id=info:pmid/&rfr_iscdi=true |