Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis

Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO 2 , nuclear fuel cladding, concrete, stainless steel and other n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-06, Vol.9 (21), p.12612-12622
Hauptverfasser: Ding, Hao, Dixon Wilkins, Malin C, Gausse, Clémence, Mottram, Lucy M, Sun, Shikuan, Stennett, Martin C, Grolimund, Daniel, Tappero, Ryan, Nicholas, Sarah, Hyatt, Neil C, Corkhill, Claire L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12622
container_issue 21
container_start_page 12612
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Ding, Hao
Dixon Wilkins, Malin C
Gausse, Clémence
Mottram, Lucy M
Sun, Shikuan
Stennett, Martin C
Grolimund, Daniel
Tappero, Ryan
Nicholas, Sarah
Hyatt, Neil C
Corkhill, Claire L
description Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO 2 , nuclear fuel cladding, concrete, stainless steel and other nuclear reactor components, these materials behaved like lava, solidifying to form a complex, highly radioactive glass-ceramic. Using element-specific chemical probes (micro-X-ray fluorescence and X-ray absorption spectroscopy), coupled with micro-diffraction analysis, the crystalline phase assemblage of simulants of these heterogeneous materials was established, which included "chernobylite" and a range of compositions in the (U 1− x Zr x )O 2 solid solution. Novel insight to nuclear accident fuel chemistry was obtained by establishing the oxidation state and local coordination of uranium not only in these crystalline phases, but uniquely in the amorphous fraction of the material, which varied depending on the history of the nuclear lava as it flowed through the reactor. This study demonstrates that micro-focus X-ray analysis of very small fractions of material can yield rich chemical information, which can be applied to nuclear-melt down materials to aid decommissioning and nuclear fuel management at nuclear accident sites. Multi-modal μ-focus X-ray analysis was applied to Chernobyl simulant nuclear fuel materials and insight into the role of uranium speciation in controlling its incorporation within the phase assemblage, including the amorphous phase, was achieved.
doi_str_mv 10.1039/d0ta09131f
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2537579448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537579448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-e61ab88d038596124c5b76c0f74a84e7a9ca14056bbc22c5d6f6ce3b25e3e0e23</originalsourceid><addsrcrecordid>eNpF0c1LwzAUAPAiCo65i3ch6E2oJk2aj-OYToWBByd6C2n2Yju6Zibtof-9nZX5Lu8dfjzeR5JcEnxHMFX3G9warAgl7iSZZDjHqWCKnx5rKc-TWYxbPITEmCs1ST7ejIO6R_vgi6r5Qm0JyJawq2IbeuQdWpQQGl_0NWo6W4MJyHVQoy4e9K6ywafO2y6izzSYHpnG1H2s4kVy5kwdYfaXp8n78nG9eE5Xr08vi_kqtVSSNgVOTCHlBlOZK04yZvNCcIudYEYyEEZZQxjOeVHYLLP5hjtugRZZDhQwZHSaXI99fWwrHW3Vgi2tbxqwrSZCCEbZgG5GNGz53UFs9dZ3YZg06iynIheKMTmo21ENO8UYwOl9qHYm9JpgfTiwfsDr-e-BlwO-GnGI9uj-H0B_AMzBdvY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537579448</pqid></control><display><type>article</type><title>Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ding, Hao ; Dixon Wilkins, Malin C ; Gausse, Clémence ; Mottram, Lucy M ; Sun, Shikuan ; Stennett, Martin C ; Grolimund, Daniel ; Tappero, Ryan ; Nicholas, Sarah ; Hyatt, Neil C ; Corkhill, Claire L</creator><creatorcontrib>Ding, Hao ; Dixon Wilkins, Malin C ; Gausse, Clémence ; Mottram, Lucy M ; Sun, Shikuan ; Stennett, Martin C ; Grolimund, Daniel ; Tappero, Ryan ; Nicholas, Sarah ; Hyatt, Neil C ; Corkhill, Claire L ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO 2 , nuclear fuel cladding, concrete, stainless steel and other nuclear reactor components, these materials behaved like lava, solidifying to form a complex, highly radioactive glass-ceramic. Using element-specific chemical probes (micro-X-ray fluorescence and X-ray absorption spectroscopy), coupled with micro-diffraction analysis, the crystalline phase assemblage of simulants of these heterogeneous materials was established, which included "chernobylite" and a range of compositions in the (U 1− x Zr x )O 2 solid solution. Novel insight to nuclear accident fuel chemistry was obtained by establishing the oxidation state and local coordination of uranium not only in these crystalline phases, but uniquely in the amorphous fraction of the material, which varied depending on the history of the nuclear lava as it flowed through the reactor. This study demonstrates that micro-focus X-ray analysis of very small fractions of material can yield rich chemical information, which can be applied to nuclear-melt down materials to aid decommissioning and nuclear fuel management at nuclear accident sites. Multi-modal μ-focus X-ray analysis was applied to Chernobyl simulant nuclear fuel materials and insight into the role of uranium speciation in controlling its incorporation within the phase assemblage, including the amorphous phase, was achieved.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta09131f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Amorphous materials ; Chemical analysis ; Crystal structure ; Crystallinity ; Fluorescence ; Fluorescent indicators ; Glass ceramics ; MATERIALS SCIENCE ; Nuclear accidents ; Nuclear accidents &amp; safety ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; Nuclear fuel elements ; Nuclear fuels ; Nuclear reactor components ; Nuclear reactors ; Oxidation ; Radioactivity ; Reactors ; Solid solutions ; Stainless steel ; Stainless steels ; Uranium ; Uranium dioxide ; Valence ; X ray absorption ; X ray analysis ; X ray fluorescence analysis ; X-ray absorption spectroscopy ; X-ray fluorescence</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-06, Vol.9 (21), p.12612-12622</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-e61ab88d038596124c5b76c0f74a84e7a9ca14056bbc22c5d6f6ce3b25e3e0e23</citedby><cites>FETCH-LOGICAL-c381t-e61ab88d038596124c5b76c0f74a84e7a9ca14056bbc22c5d6f6ce3b25e3e0e23</cites><orcidid>0000-0002-1688-5072 ; 0000-0002-2491-3897 ; 0000-0001-9721-7940 ; 0000-0002-8363-9103 ; 0000-0002-3560-2461 ; 0000-0002-7488-3219 ; 0000-0003-1520-7672 ; 0000-0001-9662-4616 ; 0000000235602461 ; 0000000283639103 ; 0000000315207672 ; 0000000224913897 ; 0000000196624616 ; 0000000216885072 ; 0000000197217940 ; 0000000274883219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1777434$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Dixon Wilkins, Malin C</creatorcontrib><creatorcontrib>Gausse, Clémence</creatorcontrib><creatorcontrib>Mottram, Lucy M</creatorcontrib><creatorcontrib>Sun, Shikuan</creatorcontrib><creatorcontrib>Stennett, Martin C</creatorcontrib><creatorcontrib>Grolimund, Daniel</creatorcontrib><creatorcontrib>Tappero, Ryan</creatorcontrib><creatorcontrib>Nicholas, Sarah</creatorcontrib><creatorcontrib>Hyatt, Neil C</creatorcontrib><creatorcontrib>Corkhill, Claire L</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO 2 , nuclear fuel cladding, concrete, stainless steel and other nuclear reactor components, these materials behaved like lava, solidifying to form a complex, highly radioactive glass-ceramic. Using element-specific chemical probes (micro-X-ray fluorescence and X-ray absorption spectroscopy), coupled with micro-diffraction analysis, the crystalline phase assemblage of simulants of these heterogeneous materials was established, which included "chernobylite" and a range of compositions in the (U 1− x Zr x )O 2 solid solution. Novel insight to nuclear accident fuel chemistry was obtained by establishing the oxidation state and local coordination of uranium not only in these crystalline phases, but uniquely in the amorphous fraction of the material, which varied depending on the history of the nuclear lava as it flowed through the reactor. This study demonstrates that micro-focus X-ray analysis of very small fractions of material can yield rich chemical information, which can be applied to nuclear-melt down materials to aid decommissioning and nuclear fuel management at nuclear accident sites. Multi-modal μ-focus X-ray analysis was applied to Chernobyl simulant nuclear fuel materials and insight into the role of uranium speciation in controlling its incorporation within the phase assemblage, including the amorphous phase, was achieved.</description><subject>Absorption spectroscopy</subject><subject>Amorphous materials</subject><subject>Chemical analysis</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>Glass ceramics</subject><subject>MATERIALS SCIENCE</subject><subject>Nuclear accidents</subject><subject>Nuclear accidents &amp; safety</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>Nuclear fuel elements</subject><subject>Nuclear fuels</subject><subject>Nuclear reactor components</subject><subject>Nuclear reactors</subject><subject>Oxidation</subject><subject>Radioactivity</subject><subject>Reactors</subject><subject>Solid solutions</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Uranium</subject><subject>Uranium dioxide</subject><subject>Valence</subject><subject>X ray absorption</subject><subject>X ray analysis</subject><subject>X ray fluorescence analysis</subject><subject>X-ray absorption spectroscopy</subject><subject>X-ray fluorescence</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpF0c1LwzAUAPAiCo65i3ch6E2oJk2aj-OYToWBByd6C2n2Yju6Zibtof-9nZX5Lu8dfjzeR5JcEnxHMFX3G9warAgl7iSZZDjHqWCKnx5rKc-TWYxbPITEmCs1ST7ejIO6R_vgi6r5Qm0JyJawq2IbeuQdWpQQGl_0NWo6W4MJyHVQoy4e9K6ywafO2y6izzSYHpnG1H2s4kVy5kwdYfaXp8n78nG9eE5Xr08vi_kqtVSSNgVOTCHlBlOZK04yZvNCcIudYEYyEEZZQxjOeVHYLLP5hjtugRZZDhQwZHSaXI99fWwrHW3Vgi2tbxqwrSZCCEbZgG5GNGz53UFs9dZ3YZg06iynIheKMTmo21ENO8UYwOl9qHYm9JpgfTiwfsDr-e-BlwO-GnGI9uj-H0B_AMzBdvY</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Ding, Hao</creator><creator>Dixon Wilkins, Malin C</creator><creator>Gausse, Clémence</creator><creator>Mottram, Lucy M</creator><creator>Sun, Shikuan</creator><creator>Stennett, Martin C</creator><creator>Grolimund, Daniel</creator><creator>Tappero, Ryan</creator><creator>Nicholas, Sarah</creator><creator>Hyatt, Neil C</creator><creator>Corkhill, Claire L</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1688-5072</orcidid><orcidid>https://orcid.org/0000-0002-2491-3897</orcidid><orcidid>https://orcid.org/0000-0001-9721-7940</orcidid><orcidid>https://orcid.org/0000-0002-8363-9103</orcidid><orcidid>https://orcid.org/0000-0002-3560-2461</orcidid><orcidid>https://orcid.org/0000-0002-7488-3219</orcidid><orcidid>https://orcid.org/0000-0003-1520-7672</orcidid><orcidid>https://orcid.org/0000-0001-9662-4616</orcidid><orcidid>https://orcid.org/0000000235602461</orcidid><orcidid>https://orcid.org/0000000283639103</orcidid><orcidid>https://orcid.org/0000000315207672</orcidid><orcidid>https://orcid.org/0000000224913897</orcidid><orcidid>https://orcid.org/0000000196624616</orcidid><orcidid>https://orcid.org/0000000216885072</orcidid><orcidid>https://orcid.org/0000000197217940</orcidid><orcidid>https://orcid.org/0000000274883219</orcidid></search><sort><creationdate>20210607</creationdate><title>Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis</title><author>Ding, Hao ; Dixon Wilkins, Malin C ; Gausse, Clémence ; Mottram, Lucy M ; Sun, Shikuan ; Stennett, Martin C ; Grolimund, Daniel ; Tappero, Ryan ; Nicholas, Sarah ; Hyatt, Neil C ; Corkhill, Claire L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-e61ab88d038596124c5b76c0f74a84e7a9ca14056bbc22c5d6f6ce3b25e3e0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectroscopy</topic><topic>Amorphous materials</topic><topic>Chemical analysis</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>Glass ceramics</topic><topic>MATERIALS SCIENCE</topic><topic>Nuclear accidents</topic><topic>Nuclear accidents &amp; safety</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>Nuclear fuel elements</topic><topic>Nuclear fuels</topic><topic>Nuclear reactor components</topic><topic>Nuclear reactors</topic><topic>Oxidation</topic><topic>Radioactivity</topic><topic>Reactors</topic><topic>Solid solutions</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Uranium</topic><topic>Uranium dioxide</topic><topic>Valence</topic><topic>X ray absorption</topic><topic>X ray analysis</topic><topic>X ray fluorescence analysis</topic><topic>X-ray absorption spectroscopy</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Dixon Wilkins, Malin C</creatorcontrib><creatorcontrib>Gausse, Clémence</creatorcontrib><creatorcontrib>Mottram, Lucy M</creatorcontrib><creatorcontrib>Sun, Shikuan</creatorcontrib><creatorcontrib>Stennett, Martin C</creatorcontrib><creatorcontrib>Grolimund, Daniel</creatorcontrib><creatorcontrib>Tappero, Ryan</creatorcontrib><creatorcontrib>Nicholas, Sarah</creatorcontrib><creatorcontrib>Hyatt, Neil C</creatorcontrib><creatorcontrib>Corkhill, Claire L</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Hao</au><au>Dixon Wilkins, Malin C</au><au>Gausse, Clémence</au><au>Mottram, Lucy M</au><au>Sun, Shikuan</au><au>Stennett, Martin C</au><au>Grolimund, Daniel</au><au>Tappero, Ryan</au><au>Nicholas, Sarah</au><au>Hyatt, Neil C</au><au>Corkhill, Claire L</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-06-07</date><risdate>2021</risdate><volume>9</volume><issue>21</issue><spage>12612</spage><epage>12622</epage><pages>12612-12622</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Detailed chemical analysis of the solidified molten fuel still residing in the stricken Chernobyl reactor unit 4 are inferred using multi-modal micro-focus X-ray analysis of a low-radioactivity proxy. A fascinating mixture of molten UO 2 , nuclear fuel cladding, concrete, stainless steel and other nuclear reactor components, these materials behaved like lava, solidifying to form a complex, highly radioactive glass-ceramic. Using element-specific chemical probes (micro-X-ray fluorescence and X-ray absorption spectroscopy), coupled with micro-diffraction analysis, the crystalline phase assemblage of simulants of these heterogeneous materials was established, which included "chernobylite" and a range of compositions in the (U 1− x Zr x )O 2 solid solution. Novel insight to nuclear accident fuel chemistry was obtained by establishing the oxidation state and local coordination of uranium not only in these crystalline phases, but uniquely in the amorphous fraction of the material, which varied depending on the history of the nuclear lava as it flowed through the reactor. This study demonstrates that micro-focus X-ray analysis of very small fractions of material can yield rich chemical information, which can be applied to nuclear-melt down materials to aid decommissioning and nuclear fuel management at nuclear accident sites. Multi-modal μ-focus X-ray analysis was applied to Chernobyl simulant nuclear fuel materials and insight into the role of uranium speciation in controlling its incorporation within the phase assemblage, including the amorphous phase, was achieved.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta09131f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1688-5072</orcidid><orcidid>https://orcid.org/0000-0002-2491-3897</orcidid><orcidid>https://orcid.org/0000-0001-9721-7940</orcidid><orcidid>https://orcid.org/0000-0002-8363-9103</orcidid><orcidid>https://orcid.org/0000-0002-3560-2461</orcidid><orcidid>https://orcid.org/0000-0002-7488-3219</orcidid><orcidid>https://orcid.org/0000-0003-1520-7672</orcidid><orcidid>https://orcid.org/0000-0001-9662-4616</orcidid><orcidid>https://orcid.org/0000000235602461</orcidid><orcidid>https://orcid.org/0000000283639103</orcidid><orcidid>https://orcid.org/0000000315207672</orcidid><orcidid>https://orcid.org/0000000224913897</orcidid><orcidid>https://orcid.org/0000000196624616</orcidid><orcidid>https://orcid.org/0000000216885072</orcidid><orcidid>https://orcid.org/0000000197217940</orcidid><orcidid>https://orcid.org/0000000274883219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-06, Vol.9 (21), p.12612-12622
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2537579448
source Royal Society Of Chemistry Journals 2008-
subjects Absorption spectroscopy
Amorphous materials
Chemical analysis
Crystal structure
Crystallinity
Fluorescence
Fluorescent indicators
Glass ceramics
MATERIALS SCIENCE
Nuclear accidents
Nuclear accidents & safety
NUCLEAR FUEL CYCLE AND FUEL MATERIALS
Nuclear fuel elements
Nuclear fuels
Nuclear reactor components
Nuclear reactors
Oxidation
Radioactivity
Reactors
Solid solutions
Stainless steel
Stainless steels
Uranium
Uranium dioxide
Valence
X ray absorption
X ray analysis
X ray fluorescence analysis
X-ray absorption spectroscopy
X-ray fluorescence
title Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safely%20probing%20the%20chemistry%20of%20Chernobyl%20nuclear%20fuel%20using%20micro-focus%20X-ray%20analysis&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ding,%20Hao&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2021-06-07&rft.volume=9&rft.issue=21&rft.spage=12612&rft.epage=12622&rft.pages=12612-12622&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta09131f&rft_dat=%3Cproquest_rsc_p%3E2537579448%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537579448&rft_id=info:pmid/&rfr_iscdi=true