Development of New Robust Optimal Score Function for the Weibull Distributed Error Term in Multilevel Models

A popular robust estimation technique for linear models is the rank-based method as an alternative to the ordinary least square (OLS) and restricted maximum likelihood (REML) in the presence of extreme observations. This method is applied in machine reliability analysis and quantum engineering, espe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-15
Hauptverfasser: Saleem, Sehar, Sherwani, Rehan Ahmad Khan, Amin, Muhammad, Khalid, Maryam, Ali, Nouman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Saleem, Sehar
Sherwani, Rehan Ahmad Khan
Amin, Muhammad
Khalid, Maryam
Ali, Nouman
description A popular robust estimation technique for linear models is the rank-based method as an alternative to the ordinary least square (OLS) and restricted maximum likelihood (REML) in the presence of extreme observations. This method is applied in machine reliability analysis and quantum engineering, especially in artificial intelligence and optimization problems where outliers are commonly observed. This technique is also extended for the multilevel model, where the shape of error distribution contributes a significant role in more efficient estimation. In this study, we proposed the Weibull score function for the Weibull distributed error terms in the multilevel model. The efficiency of the proposed score function is compared with the existing Wilcoxon score function and the traditional method REML via Monte Carlo simulations after adding simulated extreme observations. For small values of shape parameter in Weibull distribution of error term showing the presence of outliers, the Weibull score function was found to be efficient as compared to the Wilcoxon and REML methods. However, for a large value of shape parameter, Wilcoxon score appeared either equally efficient than the Weibull score function. REML is observed least precise in all situations. These findings are verified through a real application on test scores data, with a small value of shape parameter, and the Weibull score function turned out the most efficient.
doi_str_mv 10.1155/2021/1953546
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537373100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537373100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-cb68db85d0aabda785d88529886a0c98d338bf3d60e0b76cfb977c95ee3fe5373</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYsoOKdvfoCAj1qXNEubPsr-qOAc6ETfSpPcsoysqUnq8NubsT37dA-cH-dwT5JcE3xPCGOjDGdkREpG2Tg_SQaE5TRlZFycRo2zcUoy-nWeXHi_wZFkhA8SM4UfMLbbQhuQbdAr7NCbFb0PaNkFva0NepfWAZr3rQzatqixDoU1oE_QojcGTbUPLsoACs2ci-4K3BbpFi16E7TZ56OFVWD8ZXLW1MbD1fEOk4_5bDV5Sl-Wj8-Th5dUUs5CKkXOleBM4boWqi6i4pxlJed5jWXJFaVcNFTlGLAoctmIsihkyQBoA4wWdJjcHHI7Z7978KHa2N61sbLK9n5BCcaRujtQ0lnvHTRV5-LD7rciuNrvWe33rI57Rvz2gK91q-qd_p_-A4djdbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537373100</pqid></control><display><type>article</type><title>Development of New Robust Optimal Score Function for the Weibull Distributed Error Term in Multilevel Models</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Saleem, Sehar ; Sherwani, Rehan Ahmad Khan ; Amin, Muhammad ; Khalid, Maryam ; Ali, Nouman</creator><contributor>Ahmad, Ishfaq ; Ishfaq Ahmad</contributor><creatorcontrib>Saleem, Sehar ; Sherwani, Rehan Ahmad Khan ; Amin, Muhammad ; Khalid, Maryam ; Ali, Nouman ; Ahmad, Ishfaq ; Ishfaq Ahmad</creatorcontrib><description>A popular robust estimation technique for linear models is the rank-based method as an alternative to the ordinary least square (OLS) and restricted maximum likelihood (REML) in the presence of extreme observations. This method is applied in machine reliability analysis and quantum engineering, especially in artificial intelligence and optimization problems where outliers are commonly observed. This technique is also extended for the multilevel model, where the shape of error distribution contributes a significant role in more efficient estimation. In this study, we proposed the Weibull score function for the Weibull distributed error terms in the multilevel model. The efficiency of the proposed score function is compared with the existing Wilcoxon score function and the traditional method REML via Monte Carlo simulations after adding simulated extreme observations. For small values of shape parameter in Weibull distribution of error term showing the presence of outliers, the Weibull score function was found to be efficient as compared to the Wilcoxon and REML methods. However, for a large value of shape parameter, Wilcoxon score appeared either equally efficient than the Weibull score function. REML is observed least precise in all situations. These findings are verified through a real application on test scores data, with a small value of shape parameter, and the Weibull score function turned out the most efficient.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/1953546</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Efficiency ; Errors ; Extreme values ; Mathematical models ; Mathematical problems ; Methods ; Monte Carlo simulation ; Multilevel ; Optimization ; Outliers (statistics) ; Parameter estimation ; Parameters ; Regression analysis ; Reliability analysis ; Reliability engineering ; Robustness ; Weibull distribution</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-15</ispartof><rights>Copyright © 2021 Sehar Saleem et al.</rights><rights>Copyright © 2021 Sehar Saleem et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-cb68db85d0aabda785d88529886a0c98d338bf3d60e0b76cfb977c95ee3fe5373</citedby><cites>FETCH-LOGICAL-c385t-cb68db85d0aabda785d88529886a0c98d338bf3d60e0b76cfb977c95ee3fe5373</cites><orcidid>0000-0003-4596-4658 ; 0000-0002-7431-5756 ; 0000-0002-0721-201X ; 0000-0002-4509-2370 ; 0000-0001-8832-0655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><contributor>Ahmad, Ishfaq</contributor><contributor>Ishfaq Ahmad</contributor><creatorcontrib>Saleem, Sehar</creatorcontrib><creatorcontrib>Sherwani, Rehan Ahmad Khan</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Khalid, Maryam</creatorcontrib><creatorcontrib>Ali, Nouman</creatorcontrib><title>Development of New Robust Optimal Score Function for the Weibull Distributed Error Term in Multilevel Models</title><title>Mathematical problems in engineering</title><description>A popular robust estimation technique for linear models is the rank-based method as an alternative to the ordinary least square (OLS) and restricted maximum likelihood (REML) in the presence of extreme observations. This method is applied in machine reliability analysis and quantum engineering, especially in artificial intelligence and optimization problems where outliers are commonly observed. This technique is also extended for the multilevel model, where the shape of error distribution contributes a significant role in more efficient estimation. In this study, we proposed the Weibull score function for the Weibull distributed error terms in the multilevel model. The efficiency of the proposed score function is compared with the existing Wilcoxon score function and the traditional method REML via Monte Carlo simulations after adding simulated extreme observations. For small values of shape parameter in Weibull distribution of error term showing the presence of outliers, the Weibull score function was found to be efficient as compared to the Wilcoxon and REML methods. However, for a large value of shape parameter, Wilcoxon score appeared either equally efficient than the Weibull score function. REML is observed least precise in all situations. These findings are verified through a real application on test scores data, with a small value of shape parameter, and the Weibull score function turned out the most efficient.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Efficiency</subject><subject>Errors</subject><subject>Extreme values</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Multilevel</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Regression analysis</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Robustness</subject><subject>Weibull distribution</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF9LwzAUxYsoOKdvfoCAj1qXNEubPsr-qOAc6ETfSpPcsoysqUnq8NubsT37dA-cH-dwT5JcE3xPCGOjDGdkREpG2Tg_SQaE5TRlZFycRo2zcUoy-nWeXHi_wZFkhA8SM4UfMLbbQhuQbdAr7NCbFb0PaNkFva0NepfWAZr3rQzatqixDoU1oE_QojcGTbUPLsoACs2ci-4K3BbpFi16E7TZ56OFVWD8ZXLW1MbD1fEOk4_5bDV5Sl-Wj8-Th5dUUs5CKkXOleBM4boWqi6i4pxlJed5jWXJFaVcNFTlGLAoctmIsihkyQBoA4wWdJjcHHI7Z7978KHa2N61sbLK9n5BCcaRujtQ0lnvHTRV5-LD7rciuNrvWe33rI57Rvz2gK91q-qd_p_-A4djdbs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Saleem, Sehar</creator><creator>Sherwani, Rehan Ahmad Khan</creator><creator>Amin, Muhammad</creator><creator>Khalid, Maryam</creator><creator>Ali, Nouman</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4596-4658</orcidid><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0002-0721-201X</orcidid><orcidid>https://orcid.org/0000-0002-4509-2370</orcidid><orcidid>https://orcid.org/0000-0001-8832-0655</orcidid></search><sort><creationdate>2021</creationdate><title>Development of New Robust Optimal Score Function for the Weibull Distributed Error Term in Multilevel Models</title><author>Saleem, Sehar ; Sherwani, Rehan Ahmad Khan ; Amin, Muhammad ; Khalid, Maryam ; Ali, Nouman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-cb68db85d0aabda785d88529886a0c98d338bf3d60e0b76cfb977c95ee3fe5373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Efficiency</topic><topic>Errors</topic><topic>Extreme values</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Multilevel</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Regression analysis</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Robustness</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, Sehar</creatorcontrib><creatorcontrib>Sherwani, Rehan Ahmad Khan</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Khalid, Maryam</creatorcontrib><creatorcontrib>Ali, Nouman</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, Sehar</au><au>Sherwani, Rehan Ahmad Khan</au><au>Amin, Muhammad</au><au>Khalid, Maryam</au><au>Ali, Nouman</au><au>Ahmad, Ishfaq</au><au>Ishfaq Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of New Robust Optimal Score Function for the Weibull Distributed Error Term in Multilevel Models</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>A popular robust estimation technique for linear models is the rank-based method as an alternative to the ordinary least square (OLS) and restricted maximum likelihood (REML) in the presence of extreme observations. This method is applied in machine reliability analysis and quantum engineering, especially in artificial intelligence and optimization problems where outliers are commonly observed. This technique is also extended for the multilevel model, where the shape of error distribution contributes a significant role in more efficient estimation. In this study, we proposed the Weibull score function for the Weibull distributed error terms in the multilevel model. The efficiency of the proposed score function is compared with the existing Wilcoxon score function and the traditional method REML via Monte Carlo simulations after adding simulated extreme observations. For small values of shape parameter in Weibull distribution of error term showing the presence of outliers, the Weibull score function was found to be efficient as compared to the Wilcoxon and REML methods. However, for a large value of shape parameter, Wilcoxon score appeared either equally efficient than the Weibull score function. REML is observed least precise in all situations. These findings are verified through a real application on test scores data, with a small value of shape parameter, and the Weibull score function turned out the most efficient.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/1953546</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4596-4658</orcidid><orcidid>https://orcid.org/0000-0002-7431-5756</orcidid><orcidid>https://orcid.org/0000-0002-0721-201X</orcidid><orcidid>https://orcid.org/0000-0002-4509-2370</orcidid><orcidid>https://orcid.org/0000-0001-8832-0655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021, Vol.2021, p.1-15
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2537373100
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Efficiency
Errors
Extreme values
Mathematical models
Mathematical problems
Methods
Monte Carlo simulation
Multilevel
Optimization
Outliers (statistics)
Parameter estimation
Parameters
Regression analysis
Reliability analysis
Reliability engineering
Robustness
Weibull distribution
title Development of New Robust Optimal Score Function for the Weibull Distributed Error Term in Multilevel Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20New%20Robust%20Optimal%20Score%20Function%20for%20the%20Weibull%20Distributed%20Error%20Term%20in%20Multilevel%20Models&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Saleem,%20Sehar&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/1953546&rft_dat=%3Cproquest_cross%3E2537373100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537373100&rft_id=info:pmid/&rfr_iscdi=true