Prediction of unusual plasma discharge by using Support Vector Machine

•It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2021-06, Vol.167, p.112360, Article 112360
Hauptverfasser: Nakagawa, Shota, Hochin, Teruhisa, Nomiya, Hiroki, Nakanishi, Hideya, Shoji, Mamoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112360
container_title Fusion engineering and design
container_volume 167
creator Nakagawa, Shota
Hochin, Teruhisa
Nomiya, Hiroki
Nakanishi, Hideya
Shoji, Mamoru
description •It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual emission videos and 254 videos without unusual emissions are prepared.•The prediction accuracy rate attains to 96.4%.•The unusual visible light emission may be able to be predicted around 0.3 s before the beginning of an unusual emission. This paper proposes a method for predicting an unusual emission of visible light inside the plasma vessel by using a Support Vector Machine (SVM) because the unusual emission of visible light can be caused by unexpected heating on the vessel surface. This emission must be predicted to avoid unexpected situations in which it causes some damage to the vessel. The light reflected from the divertor tiles is used as the unusual emission light. This study aims to predict such unusual emission through pictures before the start of the unusual emission, regardless of the plasma physics. This study experimentally confirms that the unusual emission of visible light inside the plasma vessel can be predicted with an accuracy rate of 96.4%, and approximately 0.3 s before the start of an unusual emission.
doi_str_mv 10.1016/j.fusengdes.2021.112360
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537152783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379621001368</els_id><sourcerecordid>2537152783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-3413929afe08a904e41fe6ac6d958e519fd0344121d36c42c0309c0d65143fdc3</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMoOKe_wYDXrXmTNm0ux3AqTBT8uA0xH1vK1tSkFfbv7ah4K7xwbs45L-dB6BpIDgT4bZO7Idl2Y2zKKaGQA1DGyQmaQV2xrALBT9GMCEoyVgl-ji5SagiBarwZWr1Ea7zufWhxcHhohzSoHe52Ku0VNj7prYobiz8PeEi-3eDXoetC7PGH1X2I-EnprW_tJTpzapfs1a_O0fvq7m35kK2f7x-Xi3WmWV31GSuACSqUs6RWghS2AGe50tyIsrYlCGcIKwqgYBjXBdWEEaGJ4SUUzBnN5uhm6u1i-Bps6mUThtiOLyUtWQUlrWo2uqrJpWNIKVonu-j3Kh4kEHmEJhv5B00eockJ2phcTEk7jvj2NsqkvW31yCiOg6UJ_t-OH0LEeO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537152783</pqid></control><display><type>article</type><title>Prediction of unusual plasma discharge by using Support Vector Machine</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nakagawa, Shota ; Hochin, Teruhisa ; Nomiya, Hiroki ; Nakanishi, Hideya ; Shoji, Mamoru</creator><creatorcontrib>Nakagawa, Shota ; Hochin, Teruhisa ; Nomiya, Hiroki ; Nakanishi, Hideya ; Shoji, Mamoru</creatorcontrib><description>•It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual emission videos and 254 videos without unusual emissions are prepared.•The prediction accuracy rate attains to 96.4%.•The unusual visible light emission may be able to be predicted around 0.3 s before the beginning of an unusual emission. This paper proposes a method for predicting an unusual emission of visible light inside the plasma vessel by using a Support Vector Machine (SVM) because the unusual emission of visible light can be caused by unexpected heating on the vessel surface. This emission must be predicted to avoid unexpected situations in which it causes some damage to the vessel. The light reflected from the divertor tiles is used as the unusual emission light. This study aims to predict such unusual emission through pictures before the start of the unusual emission, regardless of the plasma physics. This study experimentally confirms that the unusual emission of visible light inside the plasma vessel can be predicted with an accuracy rate of 96.4%, and approximately 0.3 s before the start of an unusual emission.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2021.112360</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Emission analysis ; Plasma ; Plasma jets ; Plasma physics ; Prediction ; Support Vector Machine ; Support vector machines ; Unusual emission ; Vessels</subject><ispartof>Fusion engineering and design, 2021-06, Vol.167, p.112360, Article 112360</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-3413929afe08a904e41fe6ac6d958e519fd0344121d36c42c0309c0d65143fdc3</citedby><cites>FETCH-LOGICAL-c387t-3413929afe08a904e41fe6ac6d958e519fd0344121d36c42c0309c0d65143fdc3</cites><orcidid>0000-0003-0655-7347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2021.112360$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nakagawa, Shota</creatorcontrib><creatorcontrib>Hochin, Teruhisa</creatorcontrib><creatorcontrib>Nomiya, Hiroki</creatorcontrib><creatorcontrib>Nakanishi, Hideya</creatorcontrib><creatorcontrib>Shoji, Mamoru</creatorcontrib><title>Prediction of unusual plasma discharge by using Support Vector Machine</title><title>Fusion engineering and design</title><description>•It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual emission videos and 254 videos without unusual emissions are prepared.•The prediction accuracy rate attains to 96.4%.•The unusual visible light emission may be able to be predicted around 0.3 s before the beginning of an unusual emission. This paper proposes a method for predicting an unusual emission of visible light inside the plasma vessel by using a Support Vector Machine (SVM) because the unusual emission of visible light can be caused by unexpected heating on the vessel surface. This emission must be predicted to avoid unexpected situations in which it causes some damage to the vessel. The light reflected from the divertor tiles is used as the unusual emission light. This study aims to predict such unusual emission through pictures before the start of the unusual emission, regardless of the plasma physics. This study experimentally confirms that the unusual emission of visible light inside the plasma vessel can be predicted with an accuracy rate of 96.4%, and approximately 0.3 s before the start of an unusual emission.</description><subject>Emission analysis</subject><subject>Plasma</subject><subject>Plasma jets</subject><subject>Plasma physics</subject><subject>Prediction</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Unusual emission</subject><subject>Vessels</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAYhYMoOKe_wYDXrXmTNm0ux3AqTBT8uA0xH1vK1tSkFfbv7ah4K7xwbs45L-dB6BpIDgT4bZO7Idl2Y2zKKaGQA1DGyQmaQV2xrALBT9GMCEoyVgl-ji5SagiBarwZWr1Ea7zufWhxcHhohzSoHe52Ku0VNj7prYobiz8PeEi-3eDXoetC7PGH1X2I-EnprW_tJTpzapfs1a_O0fvq7m35kK2f7x-Xi3WmWV31GSuACSqUs6RWghS2AGe50tyIsrYlCGcIKwqgYBjXBdWEEaGJ4SUUzBnN5uhm6u1i-Bps6mUThtiOLyUtWQUlrWo2uqrJpWNIKVonu-j3Kh4kEHmEJhv5B00eockJ2phcTEk7jvj2NsqkvW31yCiOg6UJ_t-OH0LEeO4</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Nakagawa, Shota</creator><creator>Hochin, Teruhisa</creator><creator>Nomiya, Hiroki</creator><creator>Nakanishi, Hideya</creator><creator>Shoji, Mamoru</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0655-7347</orcidid></search><sort><creationdate>20210601</creationdate><title>Prediction of unusual plasma discharge by using Support Vector Machine</title><author>Nakagawa, Shota ; Hochin, Teruhisa ; Nomiya, Hiroki ; Nakanishi, Hideya ; Shoji, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-3413929afe08a904e41fe6ac6d958e519fd0344121d36c42c0309c0d65143fdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Emission analysis</topic><topic>Plasma</topic><topic>Plasma jets</topic><topic>Plasma physics</topic><topic>Prediction</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Unusual emission</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakagawa, Shota</creatorcontrib><creatorcontrib>Hochin, Teruhisa</creatorcontrib><creatorcontrib>Nomiya, Hiroki</creatorcontrib><creatorcontrib>Nakanishi, Hideya</creatorcontrib><creatorcontrib>Shoji, Mamoru</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakagawa, Shota</au><au>Hochin, Teruhisa</au><au>Nomiya, Hiroki</au><au>Nakanishi, Hideya</au><au>Shoji, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of unusual plasma discharge by using Support Vector Machine</atitle><jtitle>Fusion engineering and design</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>167</volume><spage>112360</spage><pages>112360-</pages><artnum>112360</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual emission videos and 254 videos without unusual emissions are prepared.•The prediction accuracy rate attains to 96.4%.•The unusual visible light emission may be able to be predicted around 0.3 s before the beginning of an unusual emission. This paper proposes a method for predicting an unusual emission of visible light inside the plasma vessel by using a Support Vector Machine (SVM) because the unusual emission of visible light can be caused by unexpected heating on the vessel surface. This emission must be predicted to avoid unexpected situations in which it causes some damage to the vessel. The light reflected from the divertor tiles is used as the unusual emission light. This study aims to predict such unusual emission through pictures before the start of the unusual emission, regardless of the plasma physics. This study experimentally confirms that the unusual emission of visible light inside the plasma vessel can be predicted with an accuracy rate of 96.4%, and approximately 0.3 s before the start of an unusual emission.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2021.112360</doi><orcidid>https://orcid.org/0000-0003-0655-7347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2021-06, Vol.167, p.112360, Article 112360
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_journals_2537152783
source Elsevier ScienceDirect Journals Complete
subjects Emission analysis
Plasma
Plasma jets
Plasma physics
Prediction
Support Vector Machine
Support vector machines
Unusual emission
Vessels
title Prediction of unusual plasma discharge by using Support Vector Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20unusual%20plasma%20discharge%20by%20using%20Support%20Vector%20Machine&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Nakagawa,%20Shota&rft.date=2021-06-01&rft.volume=167&rft.spage=112360&rft.pages=112360-&rft.artnum=112360&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2021.112360&rft_dat=%3Cproquest_cross%3E2537152783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537152783&rft_id=info:pmid/&rft_els_id=S0920379621001368&rfr_iscdi=true