Proton irradiation induced phase transformation in Ni-Mn-Ga thin films

[Display omitted] •The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films. This paper reports the martensitic transform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2021-04, Vol.266, p.115078, Article 115078
Hauptverfasser: Ning, R., Yang, Z.P., Gao, Z.Y., Cao, X.Z., Cai, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115078
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 266
creator Ning, R.
Yang, Z.P.
Gao, Z.Y.
Cao, X.Z.
Cai, W.
description [Display omitted] •The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films. This paper reports the martensitic transformation of NiMnGa film induced by proton irradiation, which is of great significance for evaluating the reliability of NiMnGa film. Ni-Mn-Ga thin films are spotlighted as next-generation alternatives to currently used micro-actuators in the MEMS system for aircraft. Nonetheless, their potential applications are hindered by the stability under proton irradiation in the space. In the present manuscript, the microstructure evolutions of Ni50Mn25Ga25 thin films are investigated under various proton irradiation doses. A large number of point defects are introduced into the thin films at the irradiation dose over 1 × 1016 p/cm2 as indicated by the positron annihilation spectrum. And the type of defects remains the same after irradiation Consequently, 7 M martensite is formed on the surface of austenitic Ni50Mn25Ga25 thin films driven by the internal stress filed based on the GI-XRD and TEM observations.
doi_str_mv 10.1016/j.mseb.2021.115078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537152291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510721000386</els_id><sourcerecordid>2537152291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-24295457d87fd4dd4ad0c085bb732f5eaa306b71e5ebec92c828c4d121bd163</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz62ZadK04EUWdxXWP6D3kCYpm7Jt1yQr-O1tqV49zQzz3rzhR8g10AwoFLdt1gVbZ0gRMgBORXlCFlCKPGUVY6dkQSuElAMV5-QihJZSCoi4IOs3P8ShT5z3yjgV3dT35qitSQ47FWwSvepDM_jub5m8uPS5Tzcqibtxaty-C5fkrFH7YK9-65K8rx8-Vo_p9nXztLrfpjrHMqbIsOKMC1OKxjBjmDJU05LXtcix4VapnBa1AMttbXWFusRSMwMItYEiX5Kb-erBD59HG6Jsh6Pvx0CJPBfAESsYVTirtB9C8LaRB-865b8lUDnRkq2caMmJlpxpjaa72WTH77-c9TJoZ_sRg_NWR2kG95_9B4XQco0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537152291</pqid></control><display><type>article</type><title>Proton irradiation induced phase transformation in Ni-Mn-Ga thin films</title><source>Elsevier ScienceDirect Journals</source><creator>Ning, R. ; Yang, Z.P. ; Gao, Z.Y. ; Cao, X.Z. ; Cai, W.</creator><creatorcontrib>Ning, R. ; Yang, Z.P. ; Gao, Z.Y. ; Cao, X.Z. ; Cai, W.</creatorcontrib><description>[Display omitted] •The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films. This paper reports the martensitic transformation of NiMnGa film induced by proton irradiation, which is of great significance for evaluating the reliability of NiMnGa film. Ni-Mn-Ga thin films are spotlighted as next-generation alternatives to currently used micro-actuators in the MEMS system for aircraft. Nonetheless, their potential applications are hindered by the stability under proton irradiation in the space. In the present manuscript, the microstructure evolutions of Ni50Mn25Ga25 thin films are investigated under various proton irradiation doses. A large number of point defects are introduced into the thin films at the irradiation dose over 1 × 1016 p/cm2 as indicated by the positron annihilation spectrum. And the type of defects remains the same after irradiation Consequently, 7 M martensite is formed on the surface of austenitic Ni50Mn25Ga25 thin films driven by the internal stress filed based on the GI-XRD and TEM observations.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2021.115078</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Manganese ; Martensite ; Martensitic transformations ; Microactuators ; Microelectromechanical systems ; Microstructure ; Ni-Mn-Ga film ; Nickel ; Phase transitions ; Point defects ; Positron annihilation ; Proton irradiation ; Radiation dosage ; Reliability analysis ; Residual stress ; Thin films</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2021-04, Vol.266, p.115078, Article 115078</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-24295457d87fd4dd4ad0c085bb732f5eaa306b71e5ebec92c828c4d121bd163</citedby><cites>FETCH-LOGICAL-c328t-24295457d87fd4dd4ad0c085bb732f5eaa306b71e5ebec92c828c4d121bd163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921510721000386$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ning, R.</creatorcontrib><creatorcontrib>Yang, Z.P.</creatorcontrib><creatorcontrib>Gao, Z.Y.</creatorcontrib><creatorcontrib>Cao, X.Z.</creatorcontrib><creatorcontrib>Cai, W.</creatorcontrib><title>Proton irradiation induced phase transformation in Ni-Mn-Ga thin films</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted] •The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films. This paper reports the martensitic transformation of NiMnGa film induced by proton irradiation, which is of great significance for evaluating the reliability of NiMnGa film. Ni-Mn-Ga thin films are spotlighted as next-generation alternatives to currently used micro-actuators in the MEMS system for aircraft. Nonetheless, their potential applications are hindered by the stability under proton irradiation in the space. In the present manuscript, the microstructure evolutions of Ni50Mn25Ga25 thin films are investigated under various proton irradiation doses. A large number of point defects are introduced into the thin films at the irradiation dose over 1 × 1016 p/cm2 as indicated by the positron annihilation spectrum. And the type of defects remains the same after irradiation Consequently, 7 M martensite is formed on the surface of austenitic Ni50Mn25Ga25 thin films driven by the internal stress filed based on the GI-XRD and TEM observations.</description><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Microactuators</subject><subject>Microelectromechanical systems</subject><subject>Microstructure</subject><subject>Ni-Mn-Ga film</subject><subject>Nickel</subject><subject>Phase transitions</subject><subject>Point defects</subject><subject>Positron annihilation</subject><subject>Proton irradiation</subject><subject>Radiation dosage</subject><subject>Reliability analysis</subject><subject>Residual stress</subject><subject>Thin films</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz62ZadK04EUWdxXWP6D3kCYpm7Jt1yQr-O1tqV49zQzz3rzhR8g10AwoFLdt1gVbZ0gRMgBORXlCFlCKPGUVY6dkQSuElAMV5-QihJZSCoi4IOs3P8ShT5z3yjgV3dT35qitSQ47FWwSvepDM_jub5m8uPS5Tzcqibtxaty-C5fkrFH7YK9-65K8rx8-Vo_p9nXztLrfpjrHMqbIsOKMC1OKxjBjmDJU05LXtcix4VapnBa1AMttbXWFusRSMwMItYEiX5Kb-erBD59HG6Jsh6Pvx0CJPBfAESsYVTirtB9C8LaRB-865b8lUDnRkq2caMmJlpxpjaa72WTH77-c9TJoZ_sRg_NWR2kG95_9B4XQco0</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Ning, R.</creator><creator>Yang, Z.P.</creator><creator>Gao, Z.Y.</creator><creator>Cao, X.Z.</creator><creator>Cai, W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202104</creationdate><title>Proton irradiation induced phase transformation in Ni-Mn-Ga thin films</title><author>Ning, R. ; Yang, Z.P. ; Gao, Z.Y. ; Cao, X.Z. ; Cai, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-24295457d87fd4dd4ad0c085bb732f5eaa306b71e5ebec92c828c4d121bd163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Microactuators</topic><topic>Microelectromechanical systems</topic><topic>Microstructure</topic><topic>Ni-Mn-Ga film</topic><topic>Nickel</topic><topic>Phase transitions</topic><topic>Point defects</topic><topic>Positron annihilation</topic><topic>Proton irradiation</topic><topic>Radiation dosage</topic><topic>Reliability analysis</topic><topic>Residual stress</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, R.</creatorcontrib><creatorcontrib>Yang, Z.P.</creatorcontrib><creatorcontrib>Gao, Z.Y.</creatorcontrib><creatorcontrib>Cao, X.Z.</creatorcontrib><creatorcontrib>Cai, W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, R.</au><au>Yang, Z.P.</au><au>Gao, Z.Y.</au><au>Cao, X.Z.</au><au>Cai, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton irradiation induced phase transformation in Ni-Mn-Ga thin films</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2021-04</date><risdate>2021</risdate><volume>266</volume><spage>115078</spage><pages>115078-</pages><artnum>115078</artnum><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>[Display omitted] •The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films. This paper reports the martensitic transformation of NiMnGa film induced by proton irradiation, which is of great significance for evaluating the reliability of NiMnGa film. Ni-Mn-Ga thin films are spotlighted as next-generation alternatives to currently used micro-actuators in the MEMS system for aircraft. Nonetheless, their potential applications are hindered by the stability under proton irradiation in the space. In the present manuscript, the microstructure evolutions of Ni50Mn25Ga25 thin films are investigated under various proton irradiation doses. A large number of point defects are introduced into the thin films at the irradiation dose over 1 × 1016 p/cm2 as indicated by the positron annihilation spectrum. And the type of defects remains the same after irradiation Consequently, 7 M martensite is formed on the surface of austenitic Ni50Mn25Ga25 thin films driven by the internal stress filed based on the GI-XRD and TEM observations.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2021.115078</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2021-04, Vol.266, p.115078, Article 115078
issn 0921-5107
1873-4944
language eng
recordid cdi_proquest_journals_2537152291
source Elsevier ScienceDirect Journals
subjects Manganese
Martensite
Martensitic transformations
Microactuators
Microelectromechanical systems
Microstructure
Ni-Mn-Ga film
Nickel
Phase transitions
Point defects
Positron annihilation
Proton irradiation
Radiation dosage
Reliability analysis
Residual stress
Thin films
title Proton irradiation induced phase transformation in Ni-Mn-Ga thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20irradiation%20induced%20phase%20transformation%20in%20Ni-Mn-Ga%20thin%20films&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Ning,%20R.&rft.date=2021-04&rft.volume=266&rft.spage=115078&rft.pages=115078-&rft.artnum=115078&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2021.115078&rft_dat=%3Cproquest_cross%3E2537152291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537152291&rft_id=info:pmid/&rft_els_id=S0921510721000386&rfr_iscdi=true