Proton irradiation induced phase transformation in Ni-Mn-Ga thin films
[Display omitted] •The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films. This paper reports the martensitic transform...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2021-04, Vol.266, p.115078, Article 115078 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115078 |
container_title | Materials science & engineering. B, Solid-state materials for advanced technology |
container_volume | 266 |
creator | Ning, R. Yang, Z.P. Gao, Z.Y. Cao, X.Z. Cai, W. |
description | [Display omitted]
•The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films.
This paper reports the martensitic transformation of NiMnGa film induced by proton irradiation, which is of great significance for evaluating the reliability of NiMnGa film. Ni-Mn-Ga thin films are spotlighted as next-generation alternatives to currently used micro-actuators in the MEMS system for aircraft. Nonetheless, their potential applications are hindered by the stability under proton irradiation in the space. In the present manuscript, the microstructure evolutions of Ni50Mn25Ga25 thin films are investigated under various proton irradiation doses. A large number of point defects are introduced into the thin films at the irradiation dose over 1 × 1016 p/cm2 as indicated by the positron annihilation spectrum. And the type of defects remains the same after irradiation Consequently, 7 M martensite is formed on the surface of austenitic Ni50Mn25Ga25 thin films driven by the internal stress filed based on the GI-XRD and TEM observations. |
doi_str_mv | 10.1016/j.mseb.2021.115078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537152291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510721000386</els_id><sourcerecordid>2537152291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-24295457d87fd4dd4ad0c085bb732f5eaa306b71e5ebec92c828c4d121bd163</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz62ZadK04EUWdxXWP6D3kCYpm7Jt1yQr-O1tqV49zQzz3rzhR8g10AwoFLdt1gVbZ0gRMgBORXlCFlCKPGUVY6dkQSuElAMV5-QihJZSCoi4IOs3P8ShT5z3yjgV3dT35qitSQ47FWwSvepDM_jub5m8uPS5Tzcqibtxaty-C5fkrFH7YK9-65K8rx8-Vo_p9nXztLrfpjrHMqbIsOKMC1OKxjBjmDJU05LXtcix4VapnBa1AMttbXWFusRSMwMItYEiX5Kb-erBD59HG6Jsh6Pvx0CJPBfAESsYVTirtB9C8LaRB-865b8lUDnRkq2caMmJlpxpjaa72WTH77-c9TJoZ_sRg_NWR2kG95_9B4XQco0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537152291</pqid></control><display><type>article</type><title>Proton irradiation induced phase transformation in Ni-Mn-Ga thin films</title><source>Elsevier ScienceDirect Journals</source><creator>Ning, R. ; Yang, Z.P. ; Gao, Z.Y. ; Cao, X.Z. ; Cai, W.</creator><creatorcontrib>Ning, R. ; Yang, Z.P. ; Gao, Z.Y. ; Cao, X.Z. ; Cai, W.</creatorcontrib><description>[Display omitted]
•The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films.
This paper reports the martensitic transformation of NiMnGa film induced by proton irradiation, which is of great significance for evaluating the reliability of NiMnGa film. Ni-Mn-Ga thin films are spotlighted as next-generation alternatives to currently used micro-actuators in the MEMS system for aircraft. Nonetheless, their potential applications are hindered by the stability under proton irradiation in the space. In the present manuscript, the microstructure evolutions of Ni50Mn25Ga25 thin films are investigated under various proton irradiation doses. A large number of point defects are introduced into the thin films at the irradiation dose over 1 × 1016 p/cm2 as indicated by the positron annihilation spectrum. And the type of defects remains the same after irradiation Consequently, 7 M martensite is formed on the surface of austenitic Ni50Mn25Ga25 thin films driven by the internal stress filed based on the GI-XRD and TEM observations.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2021.115078</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Manganese ; Martensite ; Martensitic transformations ; Microactuators ; Microelectromechanical systems ; Microstructure ; Ni-Mn-Ga film ; Nickel ; Phase transitions ; Point defects ; Positron annihilation ; Proton irradiation ; Radiation dosage ; Reliability analysis ; Residual stress ; Thin films</subject><ispartof>Materials science & engineering. B, Solid-state materials for advanced technology, 2021-04, Vol.266, p.115078, Article 115078</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-24295457d87fd4dd4ad0c085bb732f5eaa306b71e5ebec92c828c4d121bd163</citedby><cites>FETCH-LOGICAL-c328t-24295457d87fd4dd4ad0c085bb732f5eaa306b71e5ebec92c828c4d121bd163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921510721000386$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ning, R.</creatorcontrib><creatorcontrib>Yang, Z.P.</creatorcontrib><creatorcontrib>Gao, Z.Y.</creatorcontrib><creatorcontrib>Cao, X.Z.</creatorcontrib><creatorcontrib>Cai, W.</creatorcontrib><title>Proton irradiation induced phase transformation in Ni-Mn-Ga thin films</title><title>Materials science & engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted]
•The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films.
This paper reports the martensitic transformation of NiMnGa film induced by proton irradiation, which is of great significance for evaluating the reliability of NiMnGa film. Ni-Mn-Ga thin films are spotlighted as next-generation alternatives to currently used micro-actuators in the MEMS system for aircraft. Nonetheless, their potential applications are hindered by the stability under proton irradiation in the space. In the present manuscript, the microstructure evolutions of Ni50Mn25Ga25 thin films are investigated under various proton irradiation doses. A large number of point defects are introduced into the thin films at the irradiation dose over 1 × 1016 p/cm2 as indicated by the positron annihilation spectrum. And the type of defects remains the same after irradiation Consequently, 7 M martensite is formed on the surface of austenitic Ni50Mn25Ga25 thin films driven by the internal stress filed based on the GI-XRD and TEM observations.</description><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Microactuators</subject><subject>Microelectromechanical systems</subject><subject>Microstructure</subject><subject>Ni-Mn-Ga film</subject><subject>Nickel</subject><subject>Phase transitions</subject><subject>Point defects</subject><subject>Positron annihilation</subject><subject>Proton irradiation</subject><subject>Radiation dosage</subject><subject>Reliability analysis</subject><subject>Residual stress</subject><subject>Thin films</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz62ZadK04EUWdxXWP6D3kCYpm7Jt1yQr-O1tqV49zQzz3rzhR8g10AwoFLdt1gVbZ0gRMgBORXlCFlCKPGUVY6dkQSuElAMV5-QihJZSCoi4IOs3P8ShT5z3yjgV3dT35qitSQ47FWwSvepDM_jub5m8uPS5Tzcqibtxaty-C5fkrFH7YK9-65K8rx8-Vo_p9nXztLrfpjrHMqbIsOKMC1OKxjBjmDJU05LXtcix4VapnBa1AMttbXWFusRSMwMItYEiX5Kb-erBD59HG6Jsh6Pvx0CJPBfAESsYVTirtB9C8LaRB-865b8lUDnRkq2caMmJlpxpjaa72WTH77-c9TJoZ_sRg_NWR2kG95_9B4XQco0</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Ning, R.</creator><creator>Yang, Z.P.</creator><creator>Gao, Z.Y.</creator><creator>Cao, X.Z.</creator><creator>Cai, W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202104</creationdate><title>Proton irradiation induced phase transformation in Ni-Mn-Ga thin films</title><author>Ning, R. ; Yang, Z.P. ; Gao, Z.Y. ; Cao, X.Z. ; Cai, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-24295457d87fd4dd4ad0c085bb732f5eaa306b71e5ebec92c828c4d121bd163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Microactuators</topic><topic>Microelectromechanical systems</topic><topic>Microstructure</topic><topic>Ni-Mn-Ga film</topic><topic>Nickel</topic><topic>Phase transitions</topic><topic>Point defects</topic><topic>Positron annihilation</topic><topic>Proton irradiation</topic><topic>Radiation dosage</topic><topic>Reliability analysis</topic><topic>Residual stress</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, R.</creatorcontrib><creatorcontrib>Yang, Z.P.</creatorcontrib><creatorcontrib>Gao, Z.Y.</creatorcontrib><creatorcontrib>Cao, X.Z.</creatorcontrib><creatorcontrib>Cai, W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, R.</au><au>Yang, Z.P.</au><au>Gao, Z.Y.</au><au>Cao, X.Z.</au><au>Cai, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton irradiation induced phase transformation in Ni-Mn-Ga thin films</atitle><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle><date>2021-04</date><risdate>2021</risdate><volume>266</volume><spage>115078</spage><pages>115078-</pages><artnum>115078</artnum><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>[Display omitted]
•The defects type induced by irradiation remains same and density elevates with dose.•The point defects generates compressive stress of 4 GPa in the film.•The sress by proton irradiation induces 7 M martensite formed in austenitic films.
This paper reports the martensitic transformation of NiMnGa film induced by proton irradiation, which is of great significance for evaluating the reliability of NiMnGa film. Ni-Mn-Ga thin films are spotlighted as next-generation alternatives to currently used micro-actuators in the MEMS system for aircraft. Nonetheless, their potential applications are hindered by the stability under proton irradiation in the space. In the present manuscript, the microstructure evolutions of Ni50Mn25Ga25 thin films are investigated under various proton irradiation doses. A large number of point defects are introduced into the thin films at the irradiation dose over 1 × 1016 p/cm2 as indicated by the positron annihilation spectrum. And the type of defects remains the same after irradiation Consequently, 7 M martensite is formed on the surface of austenitic Ni50Mn25Ga25 thin films driven by the internal stress filed based on the GI-XRD and TEM observations.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2021.115078</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5107 |
ispartof | Materials science & engineering. B, Solid-state materials for advanced technology, 2021-04, Vol.266, p.115078, Article 115078 |
issn | 0921-5107 1873-4944 |
language | eng |
recordid | cdi_proquest_journals_2537152291 |
source | Elsevier ScienceDirect Journals |
subjects | Manganese Martensite Martensitic transformations Microactuators Microelectromechanical systems Microstructure Ni-Mn-Ga film Nickel Phase transitions Point defects Positron annihilation Proton irradiation Radiation dosage Reliability analysis Residual stress Thin films |
title | Proton irradiation induced phase transformation in Ni-Mn-Ga thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20irradiation%20induced%20phase%20transformation%20in%20Ni-Mn-Ga%20thin%20films&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Ning,%20R.&rft.date=2021-04&rft.volume=266&rft.spage=115078&rft.pages=115078-&rft.artnum=115078&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2021.115078&rft_dat=%3Cproquest_cross%3E2537152291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537152291&rft_id=info:pmid/&rft_els_id=S0921510721000386&rfr_iscdi=true |