Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures
•Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2021-04, Vol.266, p.115048, Article 115048 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115048 |
container_title | Materials science & engineering. B, Solid-state materials for advanced technology |
container_volume | 266 |
creator | García-Merino, J.A. Mercado-Zúñiga, C. Hernández-Acosta, M.A. Aguilar-Pérez, L.A. Villanueva-Fierro, I. Hevia, S.A. Torres-Torres, C. |
description | •Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced the plasmonic activity in multiwall carbon nanotubes.
The frequency of an alternating magnetic field acting on multiwall carbon nanotubes decorated with Pt nanoparticles was identified as a change in conductance. The samples were prepared in film form using chemical vapor deposition and Pt nanoparticles were grown with acid precursors. Sample characterizations were analyzed by transmission and scanning electron microscopies. In a conductance dependent temperature measurement, the sample exhibits a non-metallic behavior. A Bode analysis shows a relocation on the controllable poles in the magneto-conductive activity. Moreover, optical nonlinearities were studied by single-beam and two-wave mixing configurations in the nanosecond regime. The optical absorbance dependent on irradiance and magnetic field was analytically described. Significant changes in two-wave mixing experiment were observed by magnetic perturbation. Sensitive magnetoplasmonic interactions by adding Pt nanoparticles on carbon nanotubes were responsible for enhancing magnetic and nonlinear optical effects. Immediate applications for scalable magnetophotonic systems in quantum sensing can be contemplated. |
doi_str_mv | 10.1016/j.mseb.2021.115048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537152004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510721000088</els_id><sourcerecordid>2537152004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-41d44d9cb7e9f21164dc00fdadfeac72563ae43fd7caeb830111f884246db8f73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz-1m0nTbghdZ_IIVL3oOaTKRlG2ym6TC_ntb17OnYeB95uMh5BZoARTWq74YInYFowwKgIry5owsoKnLnLecn5MFbRnkFdD6klzF2FNKgTG2IPZNfjlMVmUm4GFEp46Z1eiSNVbJZL3LumN2GKVL45BZlzAYDFMMpyYbfmG_38k4eDcNUTJ03q0GTHKXOel8TGFUaQwYr8mFkbuIN391ST6fHj82L_n2_fl187DNVcmalHPQnOtWdTW2hgGsuVaUGi21QalqVq1Libw0ulYSu6akAGCahjO-1l1j6nJJ7k5z98FPD8Ukej8GN60UrCprqBilfEqxU0oFH2NAI_bBDjIcBVAxKxW9mJWKWak4KZ2g-xOE0_3fFoOIys4utA2oktDe_of_AIWBgp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537152004</pqid></control><display><type>article</type><title>Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures</title><source>Elsevier ScienceDirect Journals</source><creator>García-Merino, J.A. ; Mercado-Zúñiga, C. ; Hernández-Acosta, M.A. ; Aguilar-Pérez, L.A. ; Villanueva-Fierro, I. ; Hevia, S.A. ; Torres-Torres, C.</creator><creatorcontrib>García-Merino, J.A. ; Mercado-Zúñiga, C. ; Hernández-Acosta, M.A. ; Aguilar-Pérez, L.A. ; Villanueva-Fierro, I. ; Hevia, S.A. ; Torres-Torres, C.</creatorcontrib><description>•Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced the plasmonic activity in multiwall carbon nanotubes.
The frequency of an alternating magnetic field acting on multiwall carbon nanotubes decorated with Pt nanoparticles was identified as a change in conductance. The samples were prepared in film form using chemical vapor deposition and Pt nanoparticles were grown with acid precursors. Sample characterizations were analyzed by transmission and scanning electron microscopies. In a conductance dependent temperature measurement, the sample exhibits a non-metallic behavior. A Bode analysis shows a relocation on the controllable poles in the magneto-conductive activity. Moreover, optical nonlinearities were studied by single-beam and two-wave mixing configurations in the nanosecond regime. The optical absorbance dependent on irradiance and magnetic field was analytically described. Significant changes in two-wave mixing experiment were observed by magnetic perturbation. Sensitive magnetoplasmonic interactions by adding Pt nanoparticles on carbon nanotubes were responsible for enhancing magnetic and nonlinear optical effects. Immediate applications for scalable magnetophotonic systems in quantum sensing can be contemplated.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2021.115048</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aharonov-Bohm effect ; Carbon ; Chemical vapor deposition ; Electronic transport ; Irradiance ; Magnetic fields ; Multi wall carbon nanotubes ; Nanoparticles ; Nanophotonics ; Nonlinear optics ; Nonlinearity ; Perturbation ; Platinum ; Relocation ; Resistance ; Temperature dependence ; Temperature measurement ; Two-wave mixing</subject><ispartof>Materials science & engineering. B, Solid-state materials for advanced technology, 2021-04, Vol.266, p.115048, Article 115048</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-41d44d9cb7e9f21164dc00fdadfeac72563ae43fd7caeb830111f884246db8f73</citedby><cites>FETCH-LOGICAL-c328t-41d44d9cb7e9f21164dc00fdadfeac72563ae43fd7caeb830111f884246db8f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921510721000088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>García-Merino, J.A.</creatorcontrib><creatorcontrib>Mercado-Zúñiga, C.</creatorcontrib><creatorcontrib>Hernández-Acosta, M.A.</creatorcontrib><creatorcontrib>Aguilar-Pérez, L.A.</creatorcontrib><creatorcontrib>Villanueva-Fierro, I.</creatorcontrib><creatorcontrib>Hevia, S.A.</creatorcontrib><creatorcontrib>Torres-Torres, C.</creatorcontrib><title>Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures</title><title>Materials science & engineering. B, Solid-state materials for advanced technology</title><description>•Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced the plasmonic activity in multiwall carbon nanotubes.
The frequency of an alternating magnetic field acting on multiwall carbon nanotubes decorated with Pt nanoparticles was identified as a change in conductance. The samples were prepared in film form using chemical vapor deposition and Pt nanoparticles were grown with acid precursors. Sample characterizations were analyzed by transmission and scanning electron microscopies. In a conductance dependent temperature measurement, the sample exhibits a non-metallic behavior. A Bode analysis shows a relocation on the controllable poles in the magneto-conductive activity. Moreover, optical nonlinearities were studied by single-beam and two-wave mixing configurations in the nanosecond regime. The optical absorbance dependent on irradiance and magnetic field was analytically described. Significant changes in two-wave mixing experiment were observed by magnetic perturbation. Sensitive magnetoplasmonic interactions by adding Pt nanoparticles on carbon nanotubes were responsible for enhancing magnetic and nonlinear optical effects. Immediate applications for scalable magnetophotonic systems in quantum sensing can be contemplated.</description><subject>Aharonov-Bohm effect</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Electronic transport</subject><subject>Irradiance</subject><subject>Magnetic fields</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanoparticles</subject><subject>Nanophotonics</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Perturbation</subject><subject>Platinum</subject><subject>Relocation</subject><subject>Resistance</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><subject>Two-wave mixing</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz-1m0nTbghdZ_IIVL3oOaTKRlG2ym6TC_ntb17OnYeB95uMh5BZoARTWq74YInYFowwKgIry5owsoKnLnLecn5MFbRnkFdD6klzF2FNKgTG2IPZNfjlMVmUm4GFEp46Z1eiSNVbJZL3LumN2GKVL45BZlzAYDFMMpyYbfmG_38k4eDcNUTJ03q0GTHKXOel8TGFUaQwYr8mFkbuIN391ST6fHj82L_n2_fl187DNVcmalHPQnOtWdTW2hgGsuVaUGi21QalqVq1Libw0ulYSu6akAGCahjO-1l1j6nJJ7k5z98FPD8Ukej8GN60UrCprqBilfEqxU0oFH2NAI_bBDjIcBVAxKxW9mJWKWak4KZ2g-xOE0_3fFoOIys4utA2oktDe_of_AIWBgp0</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>García-Merino, J.A.</creator><creator>Mercado-Zúñiga, C.</creator><creator>Hernández-Acosta, M.A.</creator><creator>Aguilar-Pérez, L.A.</creator><creator>Villanueva-Fierro, I.</creator><creator>Hevia, S.A.</creator><creator>Torres-Torres, C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202104</creationdate><title>Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures</title><author>García-Merino, J.A. ; Mercado-Zúñiga, C. ; Hernández-Acosta, M.A. ; Aguilar-Pérez, L.A. ; Villanueva-Fierro, I. ; Hevia, S.A. ; Torres-Torres, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-41d44d9cb7e9f21164dc00fdadfeac72563ae43fd7caeb830111f884246db8f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aharonov-Bohm effect</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Electronic transport</topic><topic>Irradiance</topic><topic>Magnetic fields</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanoparticles</topic><topic>Nanophotonics</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Perturbation</topic><topic>Platinum</topic><topic>Relocation</topic><topic>Resistance</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><topic>Two-wave mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Merino, J.A.</creatorcontrib><creatorcontrib>Mercado-Zúñiga, C.</creatorcontrib><creatorcontrib>Hernández-Acosta, M.A.</creatorcontrib><creatorcontrib>Aguilar-Pérez, L.A.</creatorcontrib><creatorcontrib>Villanueva-Fierro, I.</creatorcontrib><creatorcontrib>Hevia, S.A.</creatorcontrib><creatorcontrib>Torres-Torres, C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Merino, J.A.</au><au>Mercado-Zúñiga, C.</au><au>Hernández-Acosta, M.A.</au><au>Aguilar-Pérez, L.A.</au><au>Villanueva-Fierro, I.</au><au>Hevia, S.A.</au><au>Torres-Torres, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures</atitle><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle><date>2021-04</date><risdate>2021</risdate><volume>266</volume><spage>115048</spage><pages>115048-</pages><artnum>115048</artnum><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>•Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced the plasmonic activity in multiwall carbon nanotubes.
The frequency of an alternating magnetic field acting on multiwall carbon nanotubes decorated with Pt nanoparticles was identified as a change in conductance. The samples were prepared in film form using chemical vapor deposition and Pt nanoparticles were grown with acid precursors. Sample characterizations were analyzed by transmission and scanning electron microscopies. In a conductance dependent temperature measurement, the sample exhibits a non-metallic behavior. A Bode analysis shows a relocation on the controllable poles in the magneto-conductive activity. Moreover, optical nonlinearities were studied by single-beam and two-wave mixing configurations in the nanosecond regime. The optical absorbance dependent on irradiance and magnetic field was analytically described. Significant changes in two-wave mixing experiment were observed by magnetic perturbation. Sensitive magnetoplasmonic interactions by adding Pt nanoparticles on carbon nanotubes were responsible for enhancing magnetic and nonlinear optical effects. Immediate applications for scalable magnetophotonic systems in quantum sensing can be contemplated.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2021.115048</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5107 |
ispartof | Materials science & engineering. B, Solid-state materials for advanced technology, 2021-04, Vol.266, p.115048, Article 115048 |
issn | 0921-5107 1873-4944 |
language | eng |
recordid | cdi_proquest_journals_2537152004 |
source | Elsevier ScienceDirect Journals |
subjects | Aharonov-Bohm effect Carbon Chemical vapor deposition Electronic transport Irradiance Magnetic fields Multi wall carbon nanotubes Nanoparticles Nanophotonics Nonlinear optics Nonlinearity Perturbation Platinum Relocation Resistance Temperature dependence Temperature measurement Two-wave mixing |
title | Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20frequency%20identification%20by%20quantum%20interference%20in%20magnetoplasmonic%20carbon/metal%20nanostructures&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Garc%C3%ADa-Merino,%20J.A.&rft.date=2021-04&rft.volume=266&rft.spage=115048&rft.pages=115048-&rft.artnum=115048&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2021.115048&rft_dat=%3Cproquest_cross%3E2537152004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537152004&rft_id=info:pmid/&rft_els_id=S0921510721000088&rfr_iscdi=true |