Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures

•Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2021-04, Vol.266, p.115048, Article 115048
Hauptverfasser: García-Merino, J.A., Mercado-Zúñiga, C., Hernández-Acosta, M.A., Aguilar-Pérez, L.A., Villanueva-Fierro, I., Hevia, S.A., Torres-Torres, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115048
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 266
creator García-Merino, J.A.
Mercado-Zúñiga, C.
Hernández-Acosta, M.A.
Aguilar-Pérez, L.A.
Villanueva-Fierro, I.
Hevia, S.A.
Torres-Torres, C.
description •Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced the plasmonic activity in multiwall carbon nanotubes. The frequency of an alternating magnetic field acting on multiwall carbon nanotubes decorated with Pt nanoparticles was identified as a change in conductance. The samples were prepared in film form using chemical vapor deposition and Pt nanoparticles were grown with acid precursors. Sample characterizations were analyzed by transmission and scanning electron microscopies. In a conductance dependent temperature measurement, the sample exhibits a non-metallic behavior. A Bode analysis shows a relocation on the controllable poles in the magneto-conductive activity. Moreover, optical nonlinearities were studied by single-beam and two-wave mixing configurations in the nanosecond regime. The optical absorbance dependent on irradiance and magnetic field was analytically described. Significant changes in two-wave mixing experiment were observed by magnetic perturbation. Sensitive magnetoplasmonic interactions by adding Pt nanoparticles on carbon nanotubes were responsible for enhancing magnetic and nonlinear optical effects. Immediate applications for scalable magnetophotonic systems in quantum sensing can be contemplated.
doi_str_mv 10.1016/j.mseb.2021.115048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537152004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510721000088</els_id><sourcerecordid>2537152004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-41d44d9cb7e9f21164dc00fdadfeac72563ae43fd7caeb830111f884246db8f73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz-1m0nTbghdZ_IIVL3oOaTKRlG2ym6TC_ntb17OnYeB95uMh5BZoARTWq74YInYFowwKgIry5owsoKnLnLecn5MFbRnkFdD6klzF2FNKgTG2IPZNfjlMVmUm4GFEp46Z1eiSNVbJZL3LumN2GKVL45BZlzAYDFMMpyYbfmG_38k4eDcNUTJ03q0GTHKXOel8TGFUaQwYr8mFkbuIN391ST6fHj82L_n2_fl187DNVcmalHPQnOtWdTW2hgGsuVaUGi21QalqVq1Libw0ulYSu6akAGCahjO-1l1j6nJJ7k5z98FPD8Ukej8GN60UrCprqBilfEqxU0oFH2NAI_bBDjIcBVAxKxW9mJWKWak4KZ2g-xOE0_3fFoOIys4utA2oktDe_of_AIWBgp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537152004</pqid></control><display><type>article</type><title>Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures</title><source>Elsevier ScienceDirect Journals</source><creator>García-Merino, J.A. ; Mercado-Zúñiga, C. ; Hernández-Acosta, M.A. ; Aguilar-Pérez, L.A. ; Villanueva-Fierro, I. ; Hevia, S.A. ; Torres-Torres, C.</creator><creatorcontrib>García-Merino, J.A. ; Mercado-Zúñiga, C. ; Hernández-Acosta, M.A. ; Aguilar-Pérez, L.A. ; Villanueva-Fierro, I. ; Hevia, S.A. ; Torres-Torres, C.</creatorcontrib><description>•Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced the plasmonic activity in multiwall carbon nanotubes. The frequency of an alternating magnetic field acting on multiwall carbon nanotubes decorated with Pt nanoparticles was identified as a change in conductance. The samples were prepared in film form using chemical vapor deposition and Pt nanoparticles were grown with acid precursors. Sample characterizations were analyzed by transmission and scanning electron microscopies. In a conductance dependent temperature measurement, the sample exhibits a non-metallic behavior. A Bode analysis shows a relocation on the controllable poles in the magneto-conductive activity. Moreover, optical nonlinearities were studied by single-beam and two-wave mixing configurations in the nanosecond regime. The optical absorbance dependent on irradiance and magnetic field was analytically described. Significant changes in two-wave mixing experiment were observed by magnetic perturbation. Sensitive magnetoplasmonic interactions by adding Pt nanoparticles on carbon nanotubes were responsible for enhancing magnetic and nonlinear optical effects. Immediate applications for scalable magnetophotonic systems in quantum sensing can be contemplated.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2021.115048</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aharonov-Bohm effect ; Carbon ; Chemical vapor deposition ; Electronic transport ; Irradiance ; Magnetic fields ; Multi wall carbon nanotubes ; Nanoparticles ; Nanophotonics ; Nonlinear optics ; Nonlinearity ; Perturbation ; Platinum ; Relocation ; Resistance ; Temperature dependence ; Temperature measurement ; Two-wave mixing</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2021-04, Vol.266, p.115048, Article 115048</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-41d44d9cb7e9f21164dc00fdadfeac72563ae43fd7caeb830111f884246db8f73</citedby><cites>FETCH-LOGICAL-c328t-41d44d9cb7e9f21164dc00fdadfeac72563ae43fd7caeb830111f884246db8f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921510721000088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>García-Merino, J.A.</creatorcontrib><creatorcontrib>Mercado-Zúñiga, C.</creatorcontrib><creatorcontrib>Hernández-Acosta, M.A.</creatorcontrib><creatorcontrib>Aguilar-Pérez, L.A.</creatorcontrib><creatorcontrib>Villanueva-Fierro, I.</creatorcontrib><creatorcontrib>Hevia, S.A.</creatorcontrib><creatorcontrib>Torres-Torres, C.</creatorcontrib><title>Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>•Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced the plasmonic activity in multiwall carbon nanotubes. The frequency of an alternating magnetic field acting on multiwall carbon nanotubes decorated with Pt nanoparticles was identified as a change in conductance. The samples were prepared in film form using chemical vapor deposition and Pt nanoparticles were grown with acid precursors. Sample characterizations were analyzed by transmission and scanning electron microscopies. In a conductance dependent temperature measurement, the sample exhibits a non-metallic behavior. A Bode analysis shows a relocation on the controllable poles in the magneto-conductive activity. Moreover, optical nonlinearities were studied by single-beam and two-wave mixing configurations in the nanosecond regime. The optical absorbance dependent on irradiance and magnetic field was analytically described. Significant changes in two-wave mixing experiment were observed by magnetic perturbation. Sensitive magnetoplasmonic interactions by adding Pt nanoparticles on carbon nanotubes were responsible for enhancing magnetic and nonlinear optical effects. Immediate applications for scalable magnetophotonic systems in quantum sensing can be contemplated.</description><subject>Aharonov-Bohm effect</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Electronic transport</subject><subject>Irradiance</subject><subject>Magnetic fields</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanoparticles</subject><subject>Nanophotonics</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Perturbation</subject><subject>Platinum</subject><subject>Relocation</subject><subject>Resistance</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><subject>Two-wave mixing</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz-1m0nTbghdZ_IIVL3oOaTKRlG2ym6TC_ntb17OnYeB95uMh5BZoARTWq74YInYFowwKgIry5owsoKnLnLecn5MFbRnkFdD6klzF2FNKgTG2IPZNfjlMVmUm4GFEp46Z1eiSNVbJZL3LumN2GKVL45BZlzAYDFMMpyYbfmG_38k4eDcNUTJ03q0GTHKXOel8TGFUaQwYr8mFkbuIN391ST6fHj82L_n2_fl187DNVcmalHPQnOtWdTW2hgGsuVaUGi21QalqVq1Libw0ulYSu6akAGCahjO-1l1j6nJJ7k5z98FPD8Ukej8GN60UrCprqBilfEqxU0oFH2NAI_bBDjIcBVAxKxW9mJWKWak4KZ2g-xOE0_3fFoOIys4utA2oktDe_of_AIWBgp0</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>García-Merino, J.A.</creator><creator>Mercado-Zúñiga, C.</creator><creator>Hernández-Acosta, M.A.</creator><creator>Aguilar-Pérez, L.A.</creator><creator>Villanueva-Fierro, I.</creator><creator>Hevia, S.A.</creator><creator>Torres-Torres, C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202104</creationdate><title>Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures</title><author>García-Merino, J.A. ; Mercado-Zúñiga, C. ; Hernández-Acosta, M.A. ; Aguilar-Pérez, L.A. ; Villanueva-Fierro, I. ; Hevia, S.A. ; Torres-Torres, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-41d44d9cb7e9f21164dc00fdadfeac72563ae43fd7caeb830111f884246db8f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aharonov-Bohm effect</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Electronic transport</topic><topic>Irradiance</topic><topic>Magnetic fields</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanoparticles</topic><topic>Nanophotonics</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Perturbation</topic><topic>Platinum</topic><topic>Relocation</topic><topic>Resistance</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><topic>Two-wave mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Merino, J.A.</creatorcontrib><creatorcontrib>Mercado-Zúñiga, C.</creatorcontrib><creatorcontrib>Hernández-Acosta, M.A.</creatorcontrib><creatorcontrib>Aguilar-Pérez, L.A.</creatorcontrib><creatorcontrib>Villanueva-Fierro, I.</creatorcontrib><creatorcontrib>Hevia, S.A.</creatorcontrib><creatorcontrib>Torres-Torres, C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Merino, J.A.</au><au>Mercado-Zúñiga, C.</au><au>Hernández-Acosta, M.A.</au><au>Aguilar-Pérez, L.A.</au><au>Villanueva-Fierro, I.</au><au>Hevia, S.A.</au><au>Torres-Torres, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2021-04</date><risdate>2021</risdate><volume>266</volume><spage>115048</spage><pages>115048-</pages><artnum>115048</artnum><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>•Magneto-conductive response was detected in carbon nanotubes decorated with platinum.•An alternating magnetic field produces a resonant Aharonov-Bohm effect in the sample.•The magneto-conductivity is attributed to a quantum interference through the carbon nanotubes.•Platinum nanoparticles enhanced the plasmonic activity in multiwall carbon nanotubes. The frequency of an alternating magnetic field acting on multiwall carbon nanotubes decorated with Pt nanoparticles was identified as a change in conductance. The samples were prepared in film form using chemical vapor deposition and Pt nanoparticles were grown with acid precursors. Sample characterizations were analyzed by transmission and scanning electron microscopies. In a conductance dependent temperature measurement, the sample exhibits a non-metallic behavior. A Bode analysis shows a relocation on the controllable poles in the magneto-conductive activity. Moreover, optical nonlinearities were studied by single-beam and two-wave mixing configurations in the nanosecond regime. The optical absorbance dependent on irradiance and magnetic field was analytically described. Significant changes in two-wave mixing experiment were observed by magnetic perturbation. Sensitive magnetoplasmonic interactions by adding Pt nanoparticles on carbon nanotubes were responsible for enhancing magnetic and nonlinear optical effects. Immediate applications for scalable magnetophotonic systems in quantum sensing can be contemplated.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2021.115048</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2021-04, Vol.266, p.115048, Article 115048
issn 0921-5107
1873-4944
language eng
recordid cdi_proquest_journals_2537152004
source Elsevier ScienceDirect Journals
subjects Aharonov-Bohm effect
Carbon
Chemical vapor deposition
Electronic transport
Irradiance
Magnetic fields
Multi wall carbon nanotubes
Nanoparticles
Nanophotonics
Nonlinear optics
Nonlinearity
Perturbation
Platinum
Relocation
Resistance
Temperature dependence
Temperature measurement
Two-wave mixing
title Magnetic frequency identification by quantum interference in magnetoplasmonic carbon/metal nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20frequency%20identification%20by%20quantum%20interference%20in%20magnetoplasmonic%20carbon/metal%20nanostructures&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Garc%C3%ADa-Merino,%20J.A.&rft.date=2021-04&rft.volume=266&rft.spage=115048&rft.pages=115048-&rft.artnum=115048&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2021.115048&rft_dat=%3Cproquest_cross%3E2537152004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537152004&rft_id=info:pmid/&rft_els_id=S0921510721000088&rfr_iscdi=true