Adaptation of the point defect model to simulate oxidation kinetics of 316L stainless steel in the pressurised water reactor environment

•Oxidation thickness was measured physically using focussed ion beam cross-sections.•Oxidation kinetics was reduced as the temperature increased through the range of 290°C–360°C.•The Point Defect Model has been adapted to predict 316 L oxidation kinetics in high temperature primary water.•Departure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2021-06, Vol.185, p.109454, Article 109454
Hauptverfasser: Matthews, R.P., Knutsen, R.D., Westraadt, J.E., Couvant, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109454
container_title Corrosion science
container_volume 185
creator Matthews, R.P.
Knutsen, R.D.
Westraadt, J.E.
Couvant, T.
description •Oxidation thickness was measured physically using focussed ion beam cross-sections.•Oxidation kinetics was reduced as the temperature increased through the range of 290°C–360°C.•The Point Defect Model has been adapted to predict 316 L oxidation kinetics in high temperature primary water.•Departure from Arrhenius behaviour may be due to a loss of coherency at the metal oxide interface. The kinetics of oxide growth on 316 L stainless steel was measured after exposing samples, to a typical primary water environment at three temperatures (290℃, 320℃ and 360℃) and for test durations ranging from 1 h to 7000 h. Contrary to expected Arrhenius behaviour, the oxide growth decreased as temperature increased in this range. The Point Defect Model has been adapted to accommodate this departure. It is argued that the oxide growth behaviour is linked to the degrading coherency across the metal/oxide interface and supported by grain orientation analysis that demonstrates temperature dependence for preferred oxide growth on specific grain orientations.
doi_str_mv 10.1016/j.corsci.2021.109454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537151956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X21002201</els_id><sourcerecordid>2537151956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a887b658815c283eb7c1f273429bd49272c6eaa66eaaace4c7073500ebb7f8aa3</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gYuA6475aZt2IwyDfzDgRsFdSNNbzNgmY5KO-gY-til17ebmcjjnXPIhdEnJihJaXu9W2vmgzYoRRpNU50V-hBa0EnVG8ro8RgtCKMlqXr2eorMQdoQQlpQF-lm3ah9VNM5i1-H4BnjvjI24hQ50xINrocfR4WCGsVcRsPsy7ex_Nxai0WEKclpucYjK2B5CSBukmLFzoU_S6E2AFn-mCo89KB2dx2APxjs7gI3n6KRTfYCLv3eJXu5unzcP2fbp_nGz3maa8zxmqqpEUxZVRQvNKg6N0LRjguesbtq8ZoLpEpQqp6E05FoQwQtCoGlEVynFl-hq7t179zFCiHLnRm_TSckKLmhB66JMrnx2ae9C8NDJvTeD8t-SEjkxlzs5M5cTczkzT7GbOQbpBwcDXiYHWA2t8YmmbJ35v-AX7mOO_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537151956</pqid></control><display><type>article</type><title>Adaptation of the point defect model to simulate oxidation kinetics of 316L stainless steel in the pressurised water reactor environment</title><source>Elsevier ScienceDirect Journals</source><creator>Matthews, R.P. ; Knutsen, R.D. ; Westraadt, J.E. ; Couvant, T.</creator><creatorcontrib>Matthews, R.P. ; Knutsen, R.D. ; Westraadt, J.E. ; Couvant, T.</creatorcontrib><description>•Oxidation thickness was measured physically using focussed ion beam cross-sections.•Oxidation kinetics was reduced as the temperature increased through the range of 290°C–360°C.•The Point Defect Model has been adapted to predict 316 L oxidation kinetics in high temperature primary water.•Departure from Arrhenius behaviour may be due to a loss of coherency at the metal oxide interface. The kinetics of oxide growth on 316 L stainless steel was measured after exposing samples, to a typical primary water environment at three temperatures (290℃, 320℃ and 360℃) and for test durations ranging from 1 h to 7000 h. Contrary to expected Arrhenius behaviour, the oxide growth decreased as temperature increased in this range. The Point Defect Model has been adapted to accommodate this departure. It is argued that the oxide growth behaviour is linked to the degrading coherency across the metal/oxide interface and supported by grain orientation analysis that demonstrates temperature dependence for preferred oxide growth on specific grain orientations.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2021.109454</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Stainless steel ; B. SEM ; B. STEM ; C. Oxidation ; C. Stress corrosion ; Grain orientation ; Kinetics ; Oxidation ; Point defects ; Pressurized water reactors ; Reaction kinetics ; Stainless steel ; Stainless steels ; Temperature dependence</subject><ispartof>Corrosion science, 2021-06, Vol.185, p.109454, Article 109454</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a887b658815c283eb7c1f273429bd49272c6eaa66eaaace4c7073500ebb7f8aa3</citedby><cites>FETCH-LOGICAL-c334t-a887b658815c283eb7c1f273429bd49272c6eaa66eaaace4c7073500ebb7f8aa3</cites><orcidid>0000-0001-5435-0231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X21002201$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Matthews, R.P.</creatorcontrib><creatorcontrib>Knutsen, R.D.</creatorcontrib><creatorcontrib>Westraadt, J.E.</creatorcontrib><creatorcontrib>Couvant, T.</creatorcontrib><title>Adaptation of the point defect model to simulate oxidation kinetics of 316L stainless steel in the pressurised water reactor environment</title><title>Corrosion science</title><description>•Oxidation thickness was measured physically using focussed ion beam cross-sections.•Oxidation kinetics was reduced as the temperature increased through the range of 290°C–360°C.•The Point Defect Model has been adapted to predict 316 L oxidation kinetics in high temperature primary water.•Departure from Arrhenius behaviour may be due to a loss of coherency at the metal oxide interface. The kinetics of oxide growth on 316 L stainless steel was measured after exposing samples, to a typical primary water environment at three temperatures (290℃, 320℃ and 360℃) and for test durations ranging from 1 h to 7000 h. Contrary to expected Arrhenius behaviour, the oxide growth decreased as temperature increased in this range. The Point Defect Model has been adapted to accommodate this departure. It is argued that the oxide growth behaviour is linked to the degrading coherency across the metal/oxide interface and supported by grain orientation analysis that demonstrates temperature dependence for preferred oxide growth on specific grain orientations.</description><subject>A. Stainless steel</subject><subject>B. SEM</subject><subject>B. STEM</subject><subject>C. Oxidation</subject><subject>C. Stress corrosion</subject><subject>Grain orientation</subject><subject>Kinetics</subject><subject>Oxidation</subject><subject>Point defects</subject><subject>Pressurized water reactors</subject><subject>Reaction kinetics</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Temperature dependence</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gYuA6475aZt2IwyDfzDgRsFdSNNbzNgmY5KO-gY-til17ebmcjjnXPIhdEnJihJaXu9W2vmgzYoRRpNU50V-hBa0EnVG8ro8RgtCKMlqXr2eorMQdoQQlpQF-lm3ah9VNM5i1-H4BnjvjI24hQ50xINrocfR4WCGsVcRsPsy7ex_Nxai0WEKclpucYjK2B5CSBukmLFzoU_S6E2AFn-mCo89KB2dx2APxjs7gI3n6KRTfYCLv3eJXu5unzcP2fbp_nGz3maa8zxmqqpEUxZVRQvNKg6N0LRjguesbtq8ZoLpEpQqp6E05FoQwQtCoGlEVynFl-hq7t179zFCiHLnRm_TSckKLmhB66JMrnx2ae9C8NDJvTeD8t-SEjkxlzs5M5cTczkzT7GbOQbpBwcDXiYHWA2t8YmmbJ35v-AX7mOO_A</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Matthews, R.P.</creator><creator>Knutsen, R.D.</creator><creator>Westraadt, J.E.</creator><creator>Couvant, T.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5435-0231</orcidid></search><sort><creationdate>202106</creationdate><title>Adaptation of the point defect model to simulate oxidation kinetics of 316L stainless steel in the pressurised water reactor environment</title><author>Matthews, R.P. ; Knutsen, R.D. ; Westraadt, J.E. ; Couvant, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a887b658815c283eb7c1f273429bd49272c6eaa66eaaace4c7073500ebb7f8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A. Stainless steel</topic><topic>B. SEM</topic><topic>B. STEM</topic><topic>C. Oxidation</topic><topic>C. Stress corrosion</topic><topic>Grain orientation</topic><topic>Kinetics</topic><topic>Oxidation</topic><topic>Point defects</topic><topic>Pressurized water reactors</topic><topic>Reaction kinetics</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthews, R.P.</creatorcontrib><creatorcontrib>Knutsen, R.D.</creatorcontrib><creatorcontrib>Westraadt, J.E.</creatorcontrib><creatorcontrib>Couvant, T.</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthews, R.P.</au><au>Knutsen, R.D.</au><au>Westraadt, J.E.</au><au>Couvant, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation of the point defect model to simulate oxidation kinetics of 316L stainless steel in the pressurised water reactor environment</atitle><jtitle>Corrosion science</jtitle><date>2021-06</date><risdate>2021</risdate><volume>185</volume><spage>109454</spage><pages>109454-</pages><artnum>109454</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Oxidation thickness was measured physically using focussed ion beam cross-sections.•Oxidation kinetics was reduced as the temperature increased through the range of 290°C–360°C.•The Point Defect Model has been adapted to predict 316 L oxidation kinetics in high temperature primary water.•Departure from Arrhenius behaviour may be due to a loss of coherency at the metal oxide interface. The kinetics of oxide growth on 316 L stainless steel was measured after exposing samples, to a typical primary water environment at three temperatures (290℃, 320℃ and 360℃) and for test durations ranging from 1 h to 7000 h. Contrary to expected Arrhenius behaviour, the oxide growth decreased as temperature increased in this range. The Point Defect Model has been adapted to accommodate this departure. It is argued that the oxide growth behaviour is linked to the degrading coherency across the metal/oxide interface and supported by grain orientation analysis that demonstrates temperature dependence for preferred oxide growth on specific grain orientations.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2021.109454</doi><orcidid>https://orcid.org/0000-0001-5435-0231</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2021-06, Vol.185, p.109454, Article 109454
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2537151956
source Elsevier ScienceDirect Journals
subjects A. Stainless steel
B. SEM
B. STEM
C. Oxidation
C. Stress corrosion
Grain orientation
Kinetics
Oxidation
Point defects
Pressurized water reactors
Reaction kinetics
Stainless steel
Stainless steels
Temperature dependence
title Adaptation of the point defect model to simulate oxidation kinetics of 316L stainless steel in the pressurised water reactor environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20of%20the%20point%20defect%20model%20to%20simulate%20oxidation%20kinetics%20of%20316L%20stainless%20steel%20in%20the%20pressurised%20water%20reactor%20environment&rft.jtitle=Corrosion%20science&rft.au=Matthews,%20R.P.&rft.date=2021-06&rft.volume=185&rft.spage=109454&rft.pages=109454-&rft.artnum=109454&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2021.109454&rft_dat=%3Cproquest_cross%3E2537151956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537151956&rft_id=info:pmid/&rft_els_id=S0010938X21002201&rfr_iscdi=true