Towards urban scenes understanding through polarization cues
Autonomous robotics is critically affected by the robustness of its scene understanding algorithms. We propose a two-axis pipeline based on polarization indices to analyze dynamic urban scenes. As robots evolve in unknown environments, they are prone to encountering specular obstacles. Usually, spec...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Blanchon, Marc Sidibé, Désiré Morel, Olivier Seulin, Ralph Meriaudeau, Fabrice |
description | Autonomous robotics is critically affected by the robustness of its scene understanding algorithms. We propose a two-axis pipeline based on polarization indices to analyze dynamic urban scenes. As robots evolve in unknown environments, they are prone to encountering specular obstacles. Usually, specular phenomena are rarely taken into account by algorithms which causes misinterpretations and erroneous estimates. By exploiting all the light properties, systems can greatly increase their robustness to events. In addition to the conventional photometric characteristics, we propose to include polarization sensing. We demonstrate in this paper that the contribution of polarization measurement increases both the performances of segmentation and the quality of depth estimation. Our polarimetry-based approaches are compared here with other state-of-the-art RGB-centric methods showing interest of using polarization imaging. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2537022373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537022373</sourcerecordid><originalsourceid>FETCH-proquest_journals_25370223733</originalsourceid><addsrcrecordid>eNqNiksKwjAQQIMgWLR3CLguxBlrXbgTxQN0X2Kb_iiTOpMgeHq78ACuHo_3VioBxEN2PgJsVCoyGmPgVECeY6IupX9bbkRHflrSUjtyi1DjWIKlZqBOh5597Ho9-8ny8LFh8KTr6GSn1q2dxKU_btX-fiuvj2xm_1p6qEYfmZZUQY6FAcAC8b_rC7OHOIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537022373</pqid></control><display><type>article</type><title>Towards urban scenes understanding through polarization cues</title><source>Free E- Journals</source><creator>Blanchon, Marc ; Sidibé, Désiré ; Morel, Olivier ; Seulin, Ralph ; Meriaudeau, Fabrice</creator><creatorcontrib>Blanchon, Marc ; Sidibé, Désiré ; Morel, Olivier ; Seulin, Ralph ; Meriaudeau, Fabrice</creatorcontrib><description>Autonomous robotics is critically affected by the robustness of its scene understanding algorithms. We propose a two-axis pipeline based on polarization indices to analyze dynamic urban scenes. As robots evolve in unknown environments, they are prone to encountering specular obstacles. Usually, specular phenomena are rarely taken into account by algorithms which causes misinterpretations and erroneous estimates. By exploiting all the light properties, systems can greatly increase their robustness to events. In addition to the conventional photometric characteristics, we propose to include polarization sensing. We demonstrate in this paper that the contribution of polarization measurement increases both the performances of segmentation and the quality of depth estimation. Our polarimetry-based approaches are compared here with other state-of-the-art RGB-centric methods showing interest of using polarization imaging.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Image segmentation ; Polarimetry ; Polarization ; Robotics ; Robustness ; Scene analysis ; Unknown environments</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Blanchon, Marc</creatorcontrib><creatorcontrib>Sidibé, Désiré</creatorcontrib><creatorcontrib>Morel, Olivier</creatorcontrib><creatorcontrib>Seulin, Ralph</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><title>Towards urban scenes understanding through polarization cues</title><title>arXiv.org</title><description>Autonomous robotics is critically affected by the robustness of its scene understanding algorithms. We propose a two-axis pipeline based on polarization indices to analyze dynamic urban scenes. As robots evolve in unknown environments, they are prone to encountering specular obstacles. Usually, specular phenomena are rarely taken into account by algorithms which causes misinterpretations and erroneous estimates. By exploiting all the light properties, systems can greatly increase their robustness to events. In addition to the conventional photometric characteristics, we propose to include polarization sensing. We demonstrate in this paper that the contribution of polarization measurement increases both the performances of segmentation and the quality of depth estimation. Our polarimetry-based approaches are compared here with other state-of-the-art RGB-centric methods showing interest of using polarization imaging.</description><subject>Algorithms</subject><subject>Image segmentation</subject><subject>Polarimetry</subject><subject>Polarization</subject><subject>Robotics</subject><subject>Robustness</subject><subject>Scene analysis</subject><subject>Unknown environments</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAQQIMgWLR3CLguxBlrXbgTxQN0X2Kb_iiTOpMgeHq78ACuHo_3VioBxEN2PgJsVCoyGmPgVECeY6IupX9bbkRHflrSUjtyi1DjWIKlZqBOh5597Ho9-8ny8LFh8KTr6GSn1q2dxKU_btX-fiuvj2xm_1p6qEYfmZZUQY6FAcAC8b_rC7OHOIU</recordid><startdate>20210603</startdate><enddate>20210603</enddate><creator>Blanchon, Marc</creator><creator>Sidibé, Désiré</creator><creator>Morel, Olivier</creator><creator>Seulin, Ralph</creator><creator>Meriaudeau, Fabrice</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210603</creationdate><title>Towards urban scenes understanding through polarization cues</title><author>Blanchon, Marc ; Sidibé, Désiré ; Morel, Olivier ; Seulin, Ralph ; Meriaudeau, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25370223733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Image segmentation</topic><topic>Polarimetry</topic><topic>Polarization</topic><topic>Robotics</topic><topic>Robustness</topic><topic>Scene analysis</topic><topic>Unknown environments</topic><toplevel>online_resources</toplevel><creatorcontrib>Blanchon, Marc</creatorcontrib><creatorcontrib>Sidibé, Désiré</creatorcontrib><creatorcontrib>Morel, Olivier</creatorcontrib><creatorcontrib>Seulin, Ralph</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanchon, Marc</au><au>Sidibé, Désiré</au><au>Morel, Olivier</au><au>Seulin, Ralph</au><au>Meriaudeau, Fabrice</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards urban scenes understanding through polarization cues</atitle><jtitle>arXiv.org</jtitle><date>2021-06-03</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Autonomous robotics is critically affected by the robustness of its scene understanding algorithms. We propose a two-axis pipeline based on polarization indices to analyze dynamic urban scenes. As robots evolve in unknown environments, they are prone to encountering specular obstacles. Usually, specular phenomena are rarely taken into account by algorithms which causes misinterpretations and erroneous estimates. By exploiting all the light properties, systems can greatly increase their robustness to events. In addition to the conventional photometric characteristics, we propose to include polarization sensing. We demonstrate in this paper that the contribution of polarization measurement increases both the performances of segmentation and the quality of depth estimation. Our polarimetry-based approaches are compared here with other state-of-the-art RGB-centric methods showing interest of using polarization imaging.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2537022373 |
source | Free E- Journals |
subjects | Algorithms Image segmentation Polarimetry Polarization Robotics Robustness Scene analysis Unknown environments |
title | Towards urban scenes understanding through polarization cues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20urban%20scenes%20understanding%20through%20polarization%20cues&rft.jtitle=arXiv.org&rft.au=Blanchon,%20Marc&rft.date=2021-06-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2537022373%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537022373&rft_id=info:pmid/&rfr_iscdi=true |