Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges

Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social indicators research 2021-06, Vol.155 (2), p.389-410
Hauptverfasser: Keogh, Sinéad, O'Neill, Stephen, Walsh, Kieran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 2
container_start_page 389
container_title Social indicators research
container_volume 155
creator Keogh, Sinéad
O'Neill, Stephen
Walsh, Kieran
description Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that were not designed to collect information on social exclusion. In this paper, we address these challenges by comparing a range of existing and novel approaches to constructing a composite measure and assess their performance in explaining social exclusion in later life. We focus on three widely used approaches (sum-of-scores with an applied threshold; principal component analysis; normalisation with linear aggregation), and three novel supervised machine-learning based approaches (least absolute shrinkage and selection operator; classification and regression tree; random forest). Using an older age social exclusion conceptual framework, these approaches are applied empirically with data from Wave 1 of The Irish Longitudinal Study on Ageing (TILDA). The performances of the approaches are assessed using variables that are causally related to social exclusion.
doi_str_mv 10.1007/s11205-021-02617-7
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2537006486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27293050</jstor_id><sourcerecordid>27293050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d215eb5be865dfa8b8540d823186f6a7fc2bf663865f710938ffacc8ff421de53</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BQQh4Xp0km016LKV-wBYF9Rz2Iykp7aZmdkH_vakrevMw82DmvTfDI-SSwQ0DULfIGAeZAWepCqYydUQmTCqRwYyzYzIBASLTAuCUnCFuAEDmMp-Q50XY7QP63tKVrXCIFqkLkc4RLaLv1nQ1bHvf-p3t0Ieu2tKX0PgEy49mOxxG1He0rHobaemdPScnrtqivfjBKXm7W74uHrLy6f5xMS-zRqi8z1rOpK1lbXUhW1fpWsscWs0F04UrKuUaXruiEGntFIOZ0M5VTZN6zllrpZiS69F3H8P7YLE3mzDE9B8aLoUCKHJdJBYfWU0MiNE6s49-V8VPw8AckjNjciYlZ76TMyqJxCjCRO7WNv5Z_6u6GlUb7EP8vcMVnwmQIL4AJA16yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537006486</pqid></control><display><type>article</type><title>Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges</title><source>Sociological Abstracts</source><source>Springer Nature - Complete Springer Journals</source><creator>Keogh, Sinéad ; O'Neill, Stephen ; Walsh, Kieran</creator><creatorcontrib>Keogh, Sinéad ; O'Neill, Stephen ; Walsh, Kieran</creatorcontrib><description>Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that were not designed to collect information on social exclusion. In this paper, we address these challenges by comparing a range of existing and novel approaches to constructing a composite measure and assess their performance in explaining social exclusion in later life. We focus on three widely used approaches (sum-of-scores with an applied threshold; principal component analysis; normalisation with linear aggregation), and three novel supervised machine-learning based approaches (least absolute shrinkage and selection operator; classification and regression tree; random forest). Using an older age social exclusion conceptual framework, these approaches are applied empirically with data from Wave 1 of The Irish Longitudinal Study on Ageing (TILDA). The performances of the approaches are assessed using variables that are causally related to social exclusion.</description><identifier>ISSN: 0303-8300</identifier><identifier>EISSN: 1573-0921</identifier><identifier>DOI: 10.1007/s11205-021-02617-7</identifier><language>eng</language><publisher>Dordrecht: Springer Science + Business Media</publisher><subject>Classification ; Cognitive style ; Human Geography ; Longitudinal studies ; Methodological problems ; Microeconomics ; ORIGINAL RESEARCH ; Principal components analysis ; Public Health ; Quality of Life Research ; Social exclusion ; Social Isolation ; Social Sciences ; Sociology ; Weighting</subject><ispartof>Social indicators research, 2021-06, Vol.155 (2), p.389-410</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d215eb5be865dfa8b8540d823186f6a7fc2bf663865f710938ffacc8ff421de53</citedby><cites>FETCH-LOGICAL-c374t-d215eb5be865dfa8b8540d823186f6a7fc2bf663865f710938ffacc8ff421de53</cites><orcidid>0000-0002-6718-193X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11205-021-02617-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11205-021-02617-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27323,27903,27904,33753,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Keogh, Sinéad</creatorcontrib><creatorcontrib>O'Neill, Stephen</creatorcontrib><creatorcontrib>Walsh, Kieran</creatorcontrib><title>Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges</title><title>Social indicators research</title><addtitle>Soc Indic Res</addtitle><description>Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that were not designed to collect information on social exclusion. In this paper, we address these challenges by comparing a range of existing and novel approaches to constructing a composite measure and assess their performance in explaining social exclusion in later life. We focus on three widely used approaches (sum-of-scores with an applied threshold; principal component analysis; normalisation with linear aggregation), and three novel supervised machine-learning based approaches (least absolute shrinkage and selection operator; classification and regression tree; random forest). Using an older age social exclusion conceptual framework, these approaches are applied empirically with data from Wave 1 of The Irish Longitudinal Study on Ageing (TILDA). The performances of the approaches are assessed using variables that are causally related to social exclusion.</description><subject>Classification</subject><subject>Cognitive style</subject><subject>Human Geography</subject><subject>Longitudinal studies</subject><subject>Methodological problems</subject><subject>Microeconomics</subject><subject>ORIGINAL RESEARCH</subject><subject>Principal components analysis</subject><subject>Public Health</subject><subject>Quality of Life Research</subject><subject>Social exclusion</subject><subject>Social Isolation</subject><subject>Social Sciences</subject><subject>Sociology</subject><subject>Weighting</subject><issn>0303-8300</issn><issn>1573-0921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BQQh4Xp0km016LKV-wBYF9Rz2Iykp7aZmdkH_vakrevMw82DmvTfDI-SSwQ0DULfIGAeZAWepCqYydUQmTCqRwYyzYzIBASLTAuCUnCFuAEDmMp-Q50XY7QP63tKVrXCIFqkLkc4RLaLv1nQ1bHvf-p3t0Ieu2tKX0PgEy49mOxxG1He0rHobaemdPScnrtqivfjBKXm7W74uHrLy6f5xMS-zRqi8z1rOpK1lbXUhW1fpWsscWs0F04UrKuUaXruiEGntFIOZ0M5VTZN6zllrpZiS69F3H8P7YLE3mzDE9B8aLoUCKHJdJBYfWU0MiNE6s49-V8VPw8AckjNjciYlZ76TMyqJxCjCRO7WNv5Z_6u6GlUb7EP8vcMVnwmQIL4AJA16yw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Keogh, Sinéad</creator><creator>O'Neill, Stephen</creator><creator>Walsh, Kieran</creator><general>Springer Science + Business Media</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88C</scope><scope>88G</scope><scope>88J</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0T</scope><scope>M2M</scope><scope>M2O</scope><scope>M2R</scope><scope>M2S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0002-6718-193X</orcidid></search><sort><creationdate>20210601</creationdate><title>Composite Measures for Assessing Multidimensional Social Exclusion in Later Life</title><author>Keogh, Sinéad ; O'Neill, Stephen ; Walsh, Kieran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d215eb5be865dfa8b8540d823186f6a7fc2bf663865f710938ffacc8ff421de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Cognitive style</topic><topic>Human Geography</topic><topic>Longitudinal studies</topic><topic>Methodological problems</topic><topic>Microeconomics</topic><topic>ORIGINAL RESEARCH</topic><topic>Principal components analysis</topic><topic>Public Health</topic><topic>Quality of Life Research</topic><topic>Social exclusion</topic><topic>Social Isolation</topic><topic>Social Sciences</topic><topic>Sociology</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keogh, Sinéad</creatorcontrib><creatorcontrib>O'Neill, Stephen</creatorcontrib><creatorcontrib>Walsh, Kieran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Healthcare Administration Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social indicators research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keogh, Sinéad</au><au>O'Neill, Stephen</au><au>Walsh, Kieran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges</atitle><jtitle>Social indicators research</jtitle><stitle>Soc Indic Res</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>155</volume><issue>2</issue><spage>389</spage><epage>410</epage><pages>389-410</pages><issn>0303-8300</issn><eissn>1573-0921</eissn><abstract>Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that were not designed to collect information on social exclusion. In this paper, we address these challenges by comparing a range of existing and novel approaches to constructing a composite measure and assess their performance in explaining social exclusion in later life. We focus on three widely used approaches (sum-of-scores with an applied threshold; principal component analysis; normalisation with linear aggregation), and three novel supervised machine-learning based approaches (least absolute shrinkage and selection operator; classification and regression tree; random forest). Using an older age social exclusion conceptual framework, these approaches are applied empirically with data from Wave 1 of The Irish Longitudinal Study on Ageing (TILDA). The performances of the approaches are assessed using variables that are causally related to social exclusion.</abstract><cop>Dordrecht</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s11205-021-02617-7</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6718-193X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0303-8300
ispartof Social indicators research, 2021-06, Vol.155 (2), p.389-410
issn 0303-8300
1573-0921
language eng
recordid cdi_proquest_journals_2537006486
source Sociological Abstracts; Springer Nature - Complete Springer Journals
subjects Classification
Cognitive style
Human Geography
Longitudinal studies
Methodological problems
Microeconomics
ORIGINAL RESEARCH
Principal components analysis
Public Health
Quality of Life Research
Social exclusion
Social Isolation
Social Sciences
Sociology
Weighting
title Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20Measures%20for%20Assessing%20Multidimensional%20Social%20Exclusion%20in%20Later%20Life:%20Conceptual%20and%20Methodological%20Challenges&rft.jtitle=Social%20indicators%20research&rft.au=Keogh,%20Sin%C3%A9ad&rft.date=2021-06-01&rft.volume=155&rft.issue=2&rft.spage=389&rft.epage=410&rft.pages=389-410&rft.issn=0303-8300&rft.eissn=1573-0921&rft_id=info:doi/10.1007/s11205-021-02617-7&rft_dat=%3Cjstor_proqu%3E27293050%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537006486&rft_id=info:pmid/&rft_jstor_id=27293050&rfr_iscdi=true