Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges
Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that wer...
Gespeichert in:
Veröffentlicht in: | Social indicators research 2021-06, Vol.155 (2), p.389-410 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | 2 |
container_start_page | 389 |
container_title | Social indicators research |
container_volume | 155 |
creator | Keogh, Sinéad O'Neill, Stephen Walsh, Kieran |
description | Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that were not designed to collect information on social exclusion. In this paper, we address these challenges by comparing a range of existing and novel approaches to constructing a composite measure and assess their performance in explaining social exclusion in later life. We focus on three widely used approaches (sum-of-scores with an applied threshold; principal component analysis; normalisation with linear aggregation), and three novel supervised machine-learning based approaches (least absolute shrinkage and selection operator; classification and regression tree; random forest). Using an older age social exclusion conceptual framework, these approaches are applied empirically with data from Wave 1 of The Irish Longitudinal Study on Ageing (TILDA). The performances of the approaches are assessed using variables that are causally related to social exclusion. |
doi_str_mv | 10.1007/s11205-021-02617-7 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2537006486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27293050</jstor_id><sourcerecordid>27293050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d215eb5be865dfa8b8540d823186f6a7fc2bf663865f710938ffacc8ff421de53</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BQQh4Xp0km016LKV-wBYF9Rz2Iykp7aZmdkH_vakrevMw82DmvTfDI-SSwQ0DULfIGAeZAWepCqYydUQmTCqRwYyzYzIBASLTAuCUnCFuAEDmMp-Q50XY7QP63tKVrXCIFqkLkc4RLaLv1nQ1bHvf-p3t0Ieu2tKX0PgEy49mOxxG1He0rHobaemdPScnrtqivfjBKXm7W74uHrLy6f5xMS-zRqi8z1rOpK1lbXUhW1fpWsscWs0F04UrKuUaXruiEGntFIOZ0M5VTZN6zllrpZiS69F3H8P7YLE3mzDE9B8aLoUCKHJdJBYfWU0MiNE6s49-V8VPw8AckjNjciYlZ76TMyqJxCjCRO7WNv5Z_6u6GlUb7EP8vcMVnwmQIL4AJA16yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537006486</pqid></control><display><type>article</type><title>Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges</title><source>Sociological Abstracts</source><source>Springer Nature - Complete Springer Journals</source><creator>Keogh, Sinéad ; O'Neill, Stephen ; Walsh, Kieran</creator><creatorcontrib>Keogh, Sinéad ; O'Neill, Stephen ; Walsh, Kieran</creatorcontrib><description>Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that were not designed to collect information on social exclusion. In this paper, we address these challenges by comparing a range of existing and novel approaches to constructing a composite measure and assess their performance in explaining social exclusion in later life. We focus on three widely used approaches (sum-of-scores with an applied threshold; principal component analysis; normalisation with linear aggregation), and three novel supervised machine-learning based approaches (least absolute shrinkage and selection operator; classification and regression tree; random forest). Using an older age social exclusion conceptual framework, these approaches are applied empirically with data from Wave 1 of The Irish Longitudinal Study on Ageing (TILDA). The performances of the approaches are assessed using variables that are causally related to social exclusion.</description><identifier>ISSN: 0303-8300</identifier><identifier>EISSN: 1573-0921</identifier><identifier>DOI: 10.1007/s11205-021-02617-7</identifier><language>eng</language><publisher>Dordrecht: Springer Science + Business Media</publisher><subject>Classification ; Cognitive style ; Human Geography ; Longitudinal studies ; Methodological problems ; Microeconomics ; ORIGINAL RESEARCH ; Principal components analysis ; Public Health ; Quality of Life Research ; Social exclusion ; Social Isolation ; Social Sciences ; Sociology ; Weighting</subject><ispartof>Social indicators research, 2021-06, Vol.155 (2), p.389-410</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d215eb5be865dfa8b8540d823186f6a7fc2bf663865f710938ffacc8ff421de53</citedby><cites>FETCH-LOGICAL-c374t-d215eb5be865dfa8b8540d823186f6a7fc2bf663865f710938ffacc8ff421de53</cites><orcidid>0000-0002-6718-193X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11205-021-02617-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11205-021-02617-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27323,27903,27904,33753,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Keogh, Sinéad</creatorcontrib><creatorcontrib>O'Neill, Stephen</creatorcontrib><creatorcontrib>Walsh, Kieran</creatorcontrib><title>Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges</title><title>Social indicators research</title><addtitle>Soc Indic Res</addtitle><description>Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that were not designed to collect information on social exclusion. In this paper, we address these challenges by comparing a range of existing and novel approaches to constructing a composite measure and assess their performance in explaining social exclusion in later life. We focus on three widely used approaches (sum-of-scores with an applied threshold; principal component analysis; normalisation with linear aggregation), and three novel supervised machine-learning based approaches (least absolute shrinkage and selection operator; classification and regression tree; random forest). Using an older age social exclusion conceptual framework, these approaches are applied empirically with data from Wave 1 of The Irish Longitudinal Study on Ageing (TILDA). The performances of the approaches are assessed using variables that are causally related to social exclusion.</description><subject>Classification</subject><subject>Cognitive style</subject><subject>Human Geography</subject><subject>Longitudinal studies</subject><subject>Methodological problems</subject><subject>Microeconomics</subject><subject>ORIGINAL RESEARCH</subject><subject>Principal components analysis</subject><subject>Public Health</subject><subject>Quality of Life Research</subject><subject>Social exclusion</subject><subject>Social Isolation</subject><subject>Social Sciences</subject><subject>Sociology</subject><subject>Weighting</subject><issn>0303-8300</issn><issn>1573-0921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BQQh4Xp0km016LKV-wBYF9Rz2Iykp7aZmdkH_vakrevMw82DmvTfDI-SSwQ0DULfIGAeZAWepCqYydUQmTCqRwYyzYzIBASLTAuCUnCFuAEDmMp-Q50XY7QP63tKVrXCIFqkLkc4RLaLv1nQ1bHvf-p3t0Ieu2tKX0PgEy49mOxxG1He0rHobaemdPScnrtqivfjBKXm7W74uHrLy6f5xMS-zRqi8z1rOpK1lbXUhW1fpWsscWs0F04UrKuUaXruiEGntFIOZ0M5VTZN6zllrpZiS69F3H8P7YLE3mzDE9B8aLoUCKHJdJBYfWU0MiNE6s49-V8VPw8AckjNjciYlZ76TMyqJxCjCRO7WNv5Z_6u6GlUb7EP8vcMVnwmQIL4AJA16yw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Keogh, Sinéad</creator><creator>O'Neill, Stephen</creator><creator>Walsh, Kieran</creator><general>Springer Science + Business Media</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88C</scope><scope>88G</scope><scope>88J</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0T</scope><scope>M2M</scope><scope>M2O</scope><scope>M2R</scope><scope>M2S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0002-6718-193X</orcidid></search><sort><creationdate>20210601</creationdate><title>Composite Measures for Assessing Multidimensional Social Exclusion in Later Life</title><author>Keogh, Sinéad ; O'Neill, Stephen ; Walsh, Kieran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d215eb5be865dfa8b8540d823186f6a7fc2bf663865f710938ffacc8ff421de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Cognitive style</topic><topic>Human Geography</topic><topic>Longitudinal studies</topic><topic>Methodological problems</topic><topic>Microeconomics</topic><topic>ORIGINAL RESEARCH</topic><topic>Principal components analysis</topic><topic>Public Health</topic><topic>Quality of Life Research</topic><topic>Social exclusion</topic><topic>Social Isolation</topic><topic>Social Sciences</topic><topic>Sociology</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keogh, Sinéad</creatorcontrib><creatorcontrib>O'Neill, Stephen</creatorcontrib><creatorcontrib>Walsh, Kieran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Healthcare Administration Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social indicators research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keogh, Sinéad</au><au>O'Neill, Stephen</au><au>Walsh, Kieran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges</atitle><jtitle>Social indicators research</jtitle><stitle>Soc Indic Res</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>155</volume><issue>2</issue><spage>389</spage><epage>410</epage><pages>389-410</pages><issn>0303-8300</issn><eissn>1573-0921</eissn><abstract>Although there are a number of approaches to constructing a measure of multidimensional social exclusion in later life, theoretical and methodological challenges exist around the aggregation and weighting of constituent indicators. This is in addition to a reliance on secondary data sources that were not designed to collect information on social exclusion. In this paper, we address these challenges by comparing a range of existing and novel approaches to constructing a composite measure and assess their performance in explaining social exclusion in later life. We focus on three widely used approaches (sum-of-scores with an applied threshold; principal component analysis; normalisation with linear aggregation), and three novel supervised machine-learning based approaches (least absolute shrinkage and selection operator; classification and regression tree; random forest). Using an older age social exclusion conceptual framework, these approaches are applied empirically with data from Wave 1 of The Irish Longitudinal Study on Ageing (TILDA). The performances of the approaches are assessed using variables that are causally related to social exclusion.</abstract><cop>Dordrecht</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s11205-021-02617-7</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6718-193X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-8300 |
ispartof | Social indicators research, 2021-06, Vol.155 (2), p.389-410 |
issn | 0303-8300 1573-0921 |
language | eng |
recordid | cdi_proquest_journals_2537006486 |
source | Sociological Abstracts; Springer Nature - Complete Springer Journals |
subjects | Classification Cognitive style Human Geography Longitudinal studies Methodological problems Microeconomics ORIGINAL RESEARCH Principal components analysis Public Health Quality of Life Research Social exclusion Social Isolation Social Sciences Sociology Weighting |
title | Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20Measures%20for%20Assessing%20Multidimensional%20Social%20Exclusion%20in%20Later%20Life:%20Conceptual%20and%20Methodological%20Challenges&rft.jtitle=Social%20indicators%20research&rft.au=Keogh,%20Sin%C3%A9ad&rft.date=2021-06-01&rft.volume=155&rft.issue=2&rft.spage=389&rft.epage=410&rft.pages=389-410&rft.issn=0303-8300&rft.eissn=1573-0921&rft_id=info:doi/10.1007/s11205-021-02617-7&rft_dat=%3Cjstor_proqu%3E27293050%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537006486&rft_id=info:pmid/&rft_jstor_id=27293050&rfr_iscdi=true |