Photogalvanic effects in symmetry broken nodal ring materials

Nodal ring semimetals are a class of topological material characterized by a one-dimensional circular region of band crossing in momentum space. The presence of spin-orbit coupling, whether extrinsic or intrinsic, may change the parent nodal ring phase to a Weyl semimetal, Dirac semimetal, or topolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-05, Vol.103 (20), Article 205307
Hauptverfasser: Zuber, J. W., Zhang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Physical review. B
container_volume 103
creator Zuber, J. W.
Zhang, Chao
description Nodal ring semimetals are a class of topological material characterized by a one-dimensional circular region of band crossing in momentum space. The presence of spin-orbit coupling, whether extrinsic or intrinsic, may change the parent nodal ring phase to a Weyl semimetal, Dirac semimetal, or topological insulator child phase. We investigate second harmonic generation and circular photogalvanic effect in the mid-infrared region of nodal ring materials where spin-orbit coupling produces a Weyl semimetal child phase (such as in ZrTe5 and CaP3). Spin-orbit coupling breaks the symmetries protecting the nodal ring, inducing a nontrivial Berry curvature which gives rise to colossal photocurrents up to the order of 103 μA/V2 at the interband harmonic. Our results are found to be rather robust to parameters such as Fermi level, residual scattering rate, and the number of Weyl points. However, decreasing temperature tends to destroy the harmonic peaks and changing the nodal ring radius drastically alters the harmonic condition, shifting the peak frequency. Equivalent calculations and experiments have been carried out for intrinsic Weyl semimetals such as TaAs where the photocurrents calculated and observed were at least one order of magnitude smaller, highlighting that the parent nodal ring phase enhances these optical nonlinear phenomena.
doi_str_mv 10.1103/PhysRevB.103.205307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536819854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536819854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-abecb241020a088fb87653ed6a5629f35fff9f1fba9b65874993d769ca4cec823</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWGp_gZeA561vks3XwYMWv6BgET2HbJq0W7ubmmwL--_dUvU0MzDMwIPQNYEpIcBuF-s-v_vDw3QIUwqcgTxDI1oKXWgt9Pm_53CJJjlvAIAI0BL0CN0t1rGLK7s92LZ22IfgXZdx3eLcN43vUo-rFL98i9u4tFuc6naFG9v5VNttvkIXYRA_-dUx-nx6_Ji9FPO359fZ_bxwVMqusJV3FS0JULCgVKiUFJz5pbBcUB0YDyHoQEJldSW4kqXWbCmFdrZ03inKxujmtLtL8Xvvc2c2cZ_a4dJQzoQiWvFyaLFTy6WYc_LB7FLd2NQbAuaIyvyhMsdwQsV-AEzHXlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536819854</pqid></control><display><type>article</type><title>Photogalvanic effects in symmetry broken nodal ring materials</title><source>American Physical Society Journals</source><creator>Zuber, J. W. ; Zhang, Chao</creator><creatorcontrib>Zuber, J. W. ; Zhang, Chao</creatorcontrib><description>Nodal ring semimetals are a class of topological material characterized by a one-dimensional circular region of band crossing in momentum space. The presence of spin-orbit coupling, whether extrinsic or intrinsic, may change the parent nodal ring phase to a Weyl semimetal, Dirac semimetal, or topological insulator child phase. We investigate second harmonic generation and circular photogalvanic effect in the mid-infrared region of nodal ring materials where spin-orbit coupling produces a Weyl semimetal child phase (such as in ZrTe5 and CaP3). Spin-orbit coupling breaks the symmetries protecting the nodal ring, inducing a nontrivial Berry curvature which gives rise to colossal photocurrents up to the order of 103 μA/V2 at the interband harmonic. Our results are found to be rather robust to parameters such as Fermi level, residual scattering rate, and the number of Weyl points. However, decreasing temperature tends to destroy the harmonic peaks and changing the nodal ring radius drastically alters the harmonic condition, shifting the peak frequency. Equivalent calculations and experiments have been carried out for intrinsic Weyl semimetals such as TaAs where the photocurrents calculated and observed were at least one order of magnitude smaller, highlighting that the parent nodal ring phase enhances these optical nonlinear phenomena.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.205307</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Mathematical analysis ; Metalloids ; Nonlinear phenomena ; Parameter robustness ; Peak frequency ; Photoelectric effect ; Photoelectric emission ; Rings (mathematics) ; Second harmonic generation ; Spin-orbit interactions ; Topological insulators</subject><ispartof>Physical review. B, 2021-05, Vol.103 (20), Article 205307</ispartof><rights>Copyright American Physical Society May 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-abecb241020a088fb87653ed6a5629f35fff9f1fba9b65874993d769ca4cec823</citedby><cites>FETCH-LOGICAL-c277t-abecb241020a088fb87653ed6a5629f35fff9f1fba9b65874993d769ca4cec823</cites><orcidid>0000-0002-2817-0488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Zuber, J. W.</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>Photogalvanic effects in symmetry broken nodal ring materials</title><title>Physical review. B</title><description>Nodal ring semimetals are a class of topological material characterized by a one-dimensional circular region of band crossing in momentum space. The presence of spin-orbit coupling, whether extrinsic or intrinsic, may change the parent nodal ring phase to a Weyl semimetal, Dirac semimetal, or topological insulator child phase. We investigate second harmonic generation and circular photogalvanic effect in the mid-infrared region of nodal ring materials where spin-orbit coupling produces a Weyl semimetal child phase (such as in ZrTe5 and CaP3). Spin-orbit coupling breaks the symmetries protecting the nodal ring, inducing a nontrivial Berry curvature which gives rise to colossal photocurrents up to the order of 103 μA/V2 at the interband harmonic. Our results are found to be rather robust to parameters such as Fermi level, residual scattering rate, and the number of Weyl points. However, decreasing temperature tends to destroy the harmonic peaks and changing the nodal ring radius drastically alters the harmonic condition, shifting the peak frequency. Equivalent calculations and experiments have been carried out for intrinsic Weyl semimetals such as TaAs where the photocurrents calculated and observed were at least one order of magnitude smaller, highlighting that the parent nodal ring phase enhances these optical nonlinear phenomena.</description><subject>Mathematical analysis</subject><subject>Metalloids</subject><subject>Nonlinear phenomena</subject><subject>Parameter robustness</subject><subject>Peak frequency</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Rings (mathematics)</subject><subject>Second harmonic generation</subject><subject>Spin-orbit interactions</subject><subject>Topological insulators</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEYhIMoWGp_gZeA561vks3XwYMWv6BgET2HbJq0W7ubmmwL--_dUvU0MzDMwIPQNYEpIcBuF-s-v_vDw3QIUwqcgTxDI1oKXWgt9Pm_53CJJjlvAIAI0BL0CN0t1rGLK7s92LZ22IfgXZdx3eLcN43vUo-rFL98i9u4tFuc6naFG9v5VNttvkIXYRA_-dUx-nx6_Ji9FPO359fZ_bxwVMqusJV3FS0JULCgVKiUFJz5pbBcUB0YDyHoQEJldSW4kqXWbCmFdrZ03inKxujmtLtL8Xvvc2c2cZ_a4dJQzoQiWvFyaLFTy6WYc_LB7FLd2NQbAuaIyvyhMsdwQsV-AEzHXlc</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Zuber, J. W.</creator><creator>Zhang, Chao</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2817-0488</orcidid></search><sort><creationdate>20210527</creationdate><title>Photogalvanic effects in symmetry broken nodal ring materials</title><author>Zuber, J. W. ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-abecb241020a088fb87653ed6a5629f35fff9f1fba9b65874993d769ca4cec823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical analysis</topic><topic>Metalloids</topic><topic>Nonlinear phenomena</topic><topic>Parameter robustness</topic><topic>Peak frequency</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Rings (mathematics)</topic><topic>Second harmonic generation</topic><topic>Spin-orbit interactions</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuber, J. W.</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuber, J. W.</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photogalvanic effects in symmetry broken nodal ring materials</atitle><jtitle>Physical review. B</jtitle><date>2021-05-27</date><risdate>2021</risdate><volume>103</volume><issue>20</issue><artnum>205307</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Nodal ring semimetals are a class of topological material characterized by a one-dimensional circular region of band crossing in momentum space. The presence of spin-orbit coupling, whether extrinsic or intrinsic, may change the parent nodal ring phase to a Weyl semimetal, Dirac semimetal, or topological insulator child phase. We investigate second harmonic generation and circular photogalvanic effect in the mid-infrared region of nodal ring materials where spin-orbit coupling produces a Weyl semimetal child phase (such as in ZrTe5 and CaP3). Spin-orbit coupling breaks the symmetries protecting the nodal ring, inducing a nontrivial Berry curvature which gives rise to colossal photocurrents up to the order of 103 μA/V2 at the interband harmonic. Our results are found to be rather robust to parameters such as Fermi level, residual scattering rate, and the number of Weyl points. However, decreasing temperature tends to destroy the harmonic peaks and changing the nodal ring radius drastically alters the harmonic condition, shifting the peak frequency. Equivalent calculations and experiments have been carried out for intrinsic Weyl semimetals such as TaAs where the photocurrents calculated and observed were at least one order of magnitude smaller, highlighting that the parent nodal ring phase enhances these optical nonlinear phenomena.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.205307</doi><orcidid>https://orcid.org/0000-0002-2817-0488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-05, Vol.103 (20), Article 205307
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2536819854
source American Physical Society Journals
subjects Mathematical analysis
Metalloids
Nonlinear phenomena
Parameter robustness
Peak frequency
Photoelectric effect
Photoelectric emission
Rings (mathematics)
Second harmonic generation
Spin-orbit interactions
Topological insulators
title Photogalvanic effects in symmetry broken nodal ring materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photogalvanic%20effects%20in%20symmetry%20broken%20nodal%20ring%20materials&rft.jtitle=Physical%20review.%20B&rft.au=Zuber,%20J.%20W.&rft.date=2021-05-27&rft.volume=103&rft.issue=20&rft.artnum=205307&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.205307&rft_dat=%3Cproquest_cross%3E2536819854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536819854&rft_id=info:pmid/&rfr_iscdi=true