Degeneration of Kummer surfaces

We prove that a Kummer surface defined over a complete strictly Henselian discretely valued field K of residue characteristic different from 2 admits a strict Kulikov model after finite base change. The Kulikov models we construct will be schemes, so our results imply that the semistable reduction c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2021-07, Vol.171 (1), p.65-97
1. Verfasser: OVERKAMP, OTTO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 65
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 171
creator OVERKAMP, OTTO
description We prove that a Kummer surface defined over a complete strictly Henselian discretely valued field K of residue characteristic different from 2 admits a strict Kulikov model after finite base change. The Kulikov models we construct will be schemes, so our results imply that the semistable reduction conjecture is true for Kummer surfaces in this setup, even in the category of schemes. Our construction of Kulikov models is closely related to an earlier construction of Künnemann, which produces semistable models of Abelian varieties. It is well known that the special fibre of a strict Kulikov model belongs to one of three types, and we shall prove that the type of the special fibre of a strict Kulikov model of a Kummer surface and the toric rank of a corresponding Abelian surface are determined by each other. We also study the relationship between this invariant and the Galois representation on the second ℓ-adic cohomology of the Kummer surface. Finally, we apply our results, together with earlier work of Halle–Nicaise, to give a proof of the monodromy conjecture for Kummer surfaces in equal characteristic zero.
doi_str_mv 10.1017/S0305004120000067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536803367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004120000067</cupid><sourcerecordid>2536803367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4eea025f0d80eac1d180956716f2d09214b1dc1401133779cd9f6ace6229bce83</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMoWFd_gCcLnqszSZsmR1ldFRc8qOeSJpOli23XpD34723ZBQ_iXN7hvfcNPMYuEW4QsLx9AwEFQI4c5pPlEUswlzpTIPNjlsx2Nvun7CzG7RQRGiFhV_e0oY6CGZq-S3ufvoxtSyGNY_DGUjxnJ958Rro46IJ9rB7el0_Z-vXxeXm3zqxQYshyIgO88OAUkLHoUIEuZInScweaY16js5gDohBlqa3TXk58ybmuLSmxYNd77i70XyPFodr2Y-imlxUvhFQghCynFO5TNvQxBvLVLjStCd8VQjXvUP3ZYeqIQ8e0dWjchn7R_7d-AI8jXEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536803367</pqid></control><display><type>article</type><title>Degeneration of Kummer surfaces</title><source>Cambridge University Press Journals Complete</source><creator>OVERKAMP, OTTO</creator><creatorcontrib>OVERKAMP, OTTO</creatorcontrib><description>We prove that a Kummer surface defined over a complete strictly Henselian discretely valued field K of residue characteristic different from 2 admits a strict Kulikov model after finite base change. The Kulikov models we construct will be schemes, so our results imply that the semistable reduction conjecture is true for Kummer surfaces in this setup, even in the category of schemes. Our construction of Kulikov models is closely related to an earlier construction of Künnemann, which produces semistable models of Abelian varieties. It is well known that the special fibre of a strict Kulikov model belongs to one of three types, and we shall prove that the type of the special fibre of a strict Kulikov model of a Kummer surface and the toric rank of a corresponding Abelian surface are determined by each other. We also study the relationship between this invariant and the Galois representation on the second ℓ-adic cohomology of the Kummer surface. Finally, we apply our results, together with earlier work of Halle–Nicaise, to give a proof of the monodromy conjecture for Kummer surfaces in equal characteristic zero.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004120000067</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Degeneration ; Homology</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2021-07, Vol.171 (1), p.65-97</ispartof><rights>Cambridge Philosophical Society 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4eea025f0d80eac1d180956716f2d09214b1dc1401133779cd9f6ace6229bce83</citedby><cites>FETCH-LOGICAL-c383t-4eea025f0d80eac1d180956716f2d09214b1dc1401133779cd9f6ace6229bce83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004120000067/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>OVERKAMP, OTTO</creatorcontrib><title>Degeneration of Kummer surfaces</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>We prove that a Kummer surface defined over a complete strictly Henselian discretely valued field K of residue characteristic different from 2 admits a strict Kulikov model after finite base change. The Kulikov models we construct will be schemes, so our results imply that the semistable reduction conjecture is true for Kummer surfaces in this setup, even in the category of schemes. Our construction of Kulikov models is closely related to an earlier construction of Künnemann, which produces semistable models of Abelian varieties. It is well known that the special fibre of a strict Kulikov model belongs to one of three types, and we shall prove that the type of the special fibre of a strict Kulikov model of a Kummer surface and the toric rank of a corresponding Abelian surface are determined by each other. We also study the relationship between this invariant and the Galois representation on the second ℓ-adic cohomology of the Kummer surface. Finally, we apply our results, together with earlier work of Halle–Nicaise, to give a proof of the monodromy conjecture for Kummer surfaces in equal characteristic zero.</description><subject>Degeneration</subject><subject>Homology</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLxDAQhYMoWFd_gCcLnqszSZsmR1ldFRc8qOeSJpOli23XpD34723ZBQ_iXN7hvfcNPMYuEW4QsLx9AwEFQI4c5pPlEUswlzpTIPNjlsx2Nvun7CzG7RQRGiFhV_e0oY6CGZq-S3ufvoxtSyGNY_DGUjxnJ958Rro46IJ9rB7el0_Z-vXxeXm3zqxQYshyIgO88OAUkLHoUIEuZInScweaY16js5gDohBlqa3TXk58ybmuLSmxYNd77i70XyPFodr2Y-imlxUvhFQghCynFO5TNvQxBvLVLjStCd8VQjXvUP3ZYeqIQ8e0dWjchn7R_7d-AI8jXEY</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>OVERKAMP, OTTO</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210701</creationdate><title>Degeneration of Kummer surfaces</title><author>OVERKAMP, OTTO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4eea025f0d80eac1d180956716f2d09214b1dc1401133779cd9f6ace6229bce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Degeneration</topic><topic>Homology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OVERKAMP, OTTO</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OVERKAMP, OTTO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degeneration of Kummer surfaces</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>171</volume><issue>1</issue><spage>65</spage><epage>97</epage><pages>65-97</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>We prove that a Kummer surface defined over a complete strictly Henselian discretely valued field K of residue characteristic different from 2 admits a strict Kulikov model after finite base change. The Kulikov models we construct will be schemes, so our results imply that the semistable reduction conjecture is true for Kummer surfaces in this setup, even in the category of schemes. Our construction of Kulikov models is closely related to an earlier construction of Künnemann, which produces semistable models of Abelian varieties. It is well known that the special fibre of a strict Kulikov model belongs to one of three types, and we shall prove that the type of the special fibre of a strict Kulikov model of a Kummer surface and the toric rank of a corresponding Abelian surface are determined by each other. We also study the relationship between this invariant and the Galois representation on the second ℓ-adic cohomology of the Kummer surface. Finally, we apply our results, together with earlier work of Halle–Nicaise, to give a proof of the monodromy conjecture for Kummer surfaces in equal characteristic zero.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004120000067</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2021-07, Vol.171 (1), p.65-97
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_journals_2536803367
source Cambridge University Press Journals Complete
subjects Degeneration
Homology
title Degeneration of Kummer surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degeneration%20of%20Kummer%20surfaces&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=OVERKAMP,%20OTTO&rft.date=2021-07-01&rft.volume=171&rft.issue=1&rft.spage=65&rft.epage=97&rft.pages=65-97&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004120000067&rft_dat=%3Cproquest_cross%3E2536803367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536803367&rft_id=info:pmid/&rft_cupid=10_1017_S0305004120000067&rfr_iscdi=true