Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode

Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2021-06, Vol.9 (6), p.n/a
Hauptverfasser: Quarti, Michael, Bessler, Wolfgang G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 9
creator Quarti, Michael
Bessler, Wolfgang G.
description Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization of these influences are presented: 1) deconvolution of overpotential contributions, including ohmic, concentration, and activation overpotentials of the various cell components; 2) partial electrochemical impedance spectroscopy, allowing a direct visualization of the origin of different impedance features; and 3) sensitivity analyses, allowing a systematic assessment of the influence of cell parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell. The cell features a blend cathode. The two blend components show strong coupling, which can be observed and interpreted using the results of overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis. The presented methods are useful tools for model‐supported lithium‐ion cell research and development. This article describes the development and application of three methodologies for the model‐based investigation of lithium‐ion cell behavior: 1) deconvolution of overpotential contributions; 2) partial electrochemical impedance spectroscopy; and 3) sensitivity analyses of design and material parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell.
doi_str_mv 10.1002/ente.202001122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536737880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536737880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3962-809704acb8527883606060b192628ef720bf25d1080fb9a8e7292089b5e501b23</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIIODK2RJXWtabJrGPUApUKg8JOEdOshFGbhxit1VufAHiG_kSXIrgiPawq9HM7O5E0RGHIQfAU2o8DREQgHPErWgPuRwNRijT7d9ZiN3o0LkXCCRI4gTivej9xlZkPt8-zpWjit0tqWutD25aGXZBpW2W1iy8ts0Ju1fdNzydt1SppiT20FLpO-tK2_YnTDUVe6DGaa-X2vfsrFGmd9oxWzPFZto_68U8rJraho3JGLYKEDs3FHRj5Z_DJQfRTq2Mo8Ofvh89XU4ex9eD2d3VdHw2G5SxTHEgQGYwUmUhEsyEiFNYV8ElpiiozhCKGpOKg4C6kEpQhhJByCKhBHiB8X50vPFtO_u6IOfzF7vowr0uxyROszi4QmANN6wy_Og6qvO203PV9TmHfB17vo49_409CORGsNKG-n_Y-eT2cfKn_QJRIYiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536737880</pqid></control><display><type>article</type><title>Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode</title><source>Wiley Journals</source><creator>Quarti, Michael ; Bessler, Wolfgang G.</creator><creatorcontrib>Quarti, Michael ; Bessler, Wolfgang G.</creatorcontrib><description>Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization of these influences are presented: 1) deconvolution of overpotential contributions, including ohmic, concentration, and activation overpotentials of the various cell components; 2) partial electrochemical impedance spectroscopy, allowing a direct visualization of the origin of different impedance features; and 3) sensitivity analyses, allowing a systematic assessment of the influence of cell parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell. The cell features a blend cathode. The two blend components show strong coupling, which can be observed and interpreted using the results of overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis. The presented methods are useful tools for model‐supported lithium‐ion cell research and development. This article describes the development and application of three methodologies for the model‐based investigation of lithium‐ion cell behavior: 1) deconvolution of overpotential contributions; 2) partial electrochemical impedance spectroscopy; and 3) sensitivity analyses of design and material parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202001122</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>blend electrodes ; Cathodes ; Deconvolution ; Design parameters ; Electrochemical impedance spectroscopy ; Electrochemistry ; Impedance ; Lithium ; Lithium-ion batteries ; Mathematical models ; overpotentials ; partial electrochemical impedance spectroscopy ; R&amp;D ; Research &amp; development ; sensitivity analyses ; Sensitivity analysis ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; Three dimensional models ; Visualization</subject><ispartof>Energy technology (Weinheim, Germany), 2021-06, Vol.9 (6), p.n/a</ispartof><rights>2021 The Authors. Energy Technology published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3962-809704acb8527883606060b192628ef720bf25d1080fb9a8e7292089b5e501b23</citedby><cites>FETCH-LOGICAL-c3962-809704acb8527883606060b192628ef720bf25d1080fb9a8e7292089b5e501b23</cites><orcidid>0000-0001-5550-5602 ; 0000-0001-8037-9046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.202001122$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.202001122$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Quarti, Michael</creatorcontrib><creatorcontrib>Bessler, Wolfgang G.</creatorcontrib><title>Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode</title><title>Energy technology (Weinheim, Germany)</title><description>Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization of these influences are presented: 1) deconvolution of overpotential contributions, including ohmic, concentration, and activation overpotentials of the various cell components; 2) partial electrochemical impedance spectroscopy, allowing a direct visualization of the origin of different impedance features; and 3) sensitivity analyses, allowing a systematic assessment of the influence of cell parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell. The cell features a blend cathode. The two blend components show strong coupling, which can be observed and interpreted using the results of overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis. The presented methods are useful tools for model‐supported lithium‐ion cell research and development. This article describes the development and application of three methodologies for the model‐based investigation of lithium‐ion cell behavior: 1) deconvolution of overpotential contributions; 2) partial electrochemical impedance spectroscopy; and 3) sensitivity analyses of design and material parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell.</description><subject>blend electrodes</subject><subject>Cathodes</subject><subject>Deconvolution</subject><subject>Design parameters</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Impedance</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>overpotentials</subject><subject>partial electrochemical impedance spectroscopy</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>sensitivity analyses</subject><subject>Sensitivity analysis</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Three dimensional models</subject><subject>Visualization</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUMtOwzAQjBBIIODK2RJXWtabJrGPUApUKg8JOEdOshFGbhxit1VufAHiG_kSXIrgiPawq9HM7O5E0RGHIQfAU2o8DREQgHPErWgPuRwNRijT7d9ZiN3o0LkXCCRI4gTivej9xlZkPt8-zpWjit0tqWutD25aGXZBpW2W1iy8ts0Ju1fdNzydt1SppiT20FLpO-tK2_YnTDUVe6DGaa-X2vfsrFGmd9oxWzPFZto_68U8rJraho3JGLYKEDs3FHRj5Z_DJQfRTq2Mo8Ofvh89XU4ex9eD2d3VdHw2G5SxTHEgQGYwUmUhEsyEiFNYV8ElpiiozhCKGpOKg4C6kEpQhhJByCKhBHiB8X50vPFtO_u6IOfzF7vowr0uxyROszi4QmANN6wy_Og6qvO203PV9TmHfB17vo49_409CORGsNKG-n_Y-eT2cfKn_QJRIYiQ</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Quarti, Michael</creator><creator>Bessler, Wolfgang G.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5550-5602</orcidid><orcidid>https://orcid.org/0000-0001-8037-9046</orcidid></search><sort><creationdate>202106</creationdate><title>Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode</title><author>Quarti, Michael ; Bessler, Wolfgang G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3962-809704acb8527883606060b192628ef720bf25d1080fb9a8e7292089b5e501b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>blend electrodes</topic><topic>Cathodes</topic><topic>Deconvolution</topic><topic>Design parameters</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Impedance</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>overpotentials</topic><topic>partial electrochemical impedance spectroscopy</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>sensitivity analyses</topic><topic>Sensitivity analysis</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Three dimensional models</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quarti, Michael</creatorcontrib><creatorcontrib>Bessler, Wolfgang G.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quarti, Michael</au><au>Bessler, Wolfgang G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2021-06</date><risdate>2021</risdate><volume>9</volume><issue>6</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization of these influences are presented: 1) deconvolution of overpotential contributions, including ohmic, concentration, and activation overpotentials of the various cell components; 2) partial electrochemical impedance spectroscopy, allowing a direct visualization of the origin of different impedance features; and 3) sensitivity analyses, allowing a systematic assessment of the influence of cell parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell. The cell features a blend cathode. The two blend components show strong coupling, which can be observed and interpreted using the results of overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis. The presented methods are useful tools for model‐supported lithium‐ion cell research and development. This article describes the development and application of three methodologies for the model‐based investigation of lithium‐ion cell behavior: 1) deconvolution of overpotential contributions; 2) partial electrochemical impedance spectroscopy; and 3) sensitivity analyses of design and material parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202001122</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5550-5602</orcidid><orcidid>https://orcid.org/0000-0001-8037-9046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2021-06, Vol.9 (6), p.n/a
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2536737880
source Wiley Journals
subjects blend electrodes
Cathodes
Deconvolution
Design parameters
Electrochemical impedance spectroscopy
Electrochemistry
Impedance
Lithium
Lithium-ion batteries
Mathematical models
overpotentials
partial electrochemical impedance spectroscopy
R&D
Research & development
sensitivity analyses
Sensitivity analysis
Spectroscopic analysis
Spectroscopy
Spectrum analysis
Three dimensional models
Visualization
title Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%E2%80%90Based%20Overpotential%20Deconvolution,%20Partial%20Impedance%20Spectroscopy,%20and%20Sensitivity%20Analysis%20of%20a%20Lithium%E2%80%90Ion%20Cell%20with%20Blend%20Cathode&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Quarti,%20Michael&rft.date=2021-06&rft.volume=9&rft.issue=6&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202001122&rft_dat=%3Cproquest_cross%3E2536737880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536737880&rft_id=info:pmid/&rfr_iscdi=true