Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode
Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2021-06, Vol.9 (6), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 9 |
creator | Quarti, Michael Bessler, Wolfgang G. |
description | Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization of these influences are presented: 1) deconvolution of overpotential contributions, including ohmic, concentration, and activation overpotentials of the various cell components; 2) partial electrochemical impedance spectroscopy, allowing a direct visualization of the origin of different impedance features; and 3) sensitivity analyses, allowing a systematic assessment of the influence of cell parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell. The cell features a blend cathode. The two blend components show strong coupling, which can be observed and interpreted using the results of overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis. The presented methods are useful tools for model‐supported lithium‐ion cell research and development.
This article describes the development and application of three methodologies for the model‐based investigation of lithium‐ion cell behavior: 1) deconvolution of overpotential contributions; 2) partial electrochemical impedance spectroscopy; and 3) sensitivity analyses of design and material parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell. |
doi_str_mv | 10.1002/ente.202001122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536737880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536737880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3962-809704acb8527883606060b192628ef720bf25d1080fb9a8e7292089b5e501b23</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIIODK2RJXWtabJrGPUApUKg8JOEdOshFGbhxit1VufAHiG_kSXIrgiPawq9HM7O5E0RGHIQfAU2o8DREQgHPErWgPuRwNRijT7d9ZiN3o0LkXCCRI4gTivej9xlZkPt8-zpWjit0tqWutD25aGXZBpW2W1iy8ts0Ju1fdNzydt1SppiT20FLpO-tK2_YnTDUVe6DGaa-X2vfsrFGmd9oxWzPFZto_68U8rJraho3JGLYKEDs3FHRj5Z_DJQfRTq2Mo8Ofvh89XU4ex9eD2d3VdHw2G5SxTHEgQGYwUmUhEsyEiFNYV8ElpiiozhCKGpOKg4C6kEpQhhJByCKhBHiB8X50vPFtO_u6IOfzF7vowr0uxyROszi4QmANN6wy_Og6qvO203PV9TmHfB17vo49_409CORGsNKG-n_Y-eT2cfKn_QJRIYiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536737880</pqid></control><display><type>article</type><title>Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode</title><source>Wiley Journals</source><creator>Quarti, Michael ; Bessler, Wolfgang G.</creator><creatorcontrib>Quarti, Michael ; Bessler, Wolfgang G.</creatorcontrib><description>Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization of these influences are presented: 1) deconvolution of overpotential contributions, including ohmic, concentration, and activation overpotentials of the various cell components; 2) partial electrochemical impedance spectroscopy, allowing a direct visualization of the origin of different impedance features; and 3) sensitivity analyses, allowing a systematic assessment of the influence of cell parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell. The cell features a blend cathode. The two blend components show strong coupling, which can be observed and interpreted using the results of overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis. The presented methods are useful tools for model‐supported lithium‐ion cell research and development.
This article describes the development and application of three methodologies for the model‐based investigation of lithium‐ion cell behavior: 1) deconvolution of overpotential contributions; 2) partial electrochemical impedance spectroscopy; and 3) sensitivity analyses of design and material parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202001122</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>blend electrodes ; Cathodes ; Deconvolution ; Design parameters ; Electrochemical impedance spectroscopy ; Electrochemistry ; Impedance ; Lithium ; Lithium-ion batteries ; Mathematical models ; overpotentials ; partial electrochemical impedance spectroscopy ; R&D ; Research & development ; sensitivity analyses ; Sensitivity analysis ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; Three dimensional models ; Visualization</subject><ispartof>Energy technology (Weinheim, Germany), 2021-06, Vol.9 (6), p.n/a</ispartof><rights>2021 The Authors. Energy Technology published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3962-809704acb8527883606060b192628ef720bf25d1080fb9a8e7292089b5e501b23</citedby><cites>FETCH-LOGICAL-c3962-809704acb8527883606060b192628ef720bf25d1080fb9a8e7292089b5e501b23</cites><orcidid>0000-0001-5550-5602 ; 0000-0001-8037-9046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.202001122$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.202001122$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Quarti, Michael</creatorcontrib><creatorcontrib>Bessler, Wolfgang G.</creatorcontrib><title>Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode</title><title>Energy technology (Weinheim, Germany)</title><description>Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization of these influences are presented: 1) deconvolution of overpotential contributions, including ohmic, concentration, and activation overpotentials of the various cell components; 2) partial electrochemical impedance spectroscopy, allowing a direct visualization of the origin of different impedance features; and 3) sensitivity analyses, allowing a systematic assessment of the influence of cell parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell. The cell features a blend cathode. The two blend components show strong coupling, which can be observed and interpreted using the results of overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis. The presented methods are useful tools for model‐supported lithium‐ion cell research and development.
This article describes the development and application of three methodologies for the model‐based investigation of lithium‐ion cell behavior: 1) deconvolution of overpotential contributions; 2) partial electrochemical impedance spectroscopy; and 3) sensitivity analyses of design and material parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell.</description><subject>blend electrodes</subject><subject>Cathodes</subject><subject>Deconvolution</subject><subject>Design parameters</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Impedance</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>overpotentials</subject><subject>partial electrochemical impedance spectroscopy</subject><subject>R&D</subject><subject>Research & development</subject><subject>sensitivity analyses</subject><subject>Sensitivity analysis</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Three dimensional models</subject><subject>Visualization</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUMtOwzAQjBBIIODK2RJXWtabJrGPUApUKg8JOEdOshFGbhxit1VufAHiG_kSXIrgiPawq9HM7O5E0RGHIQfAU2o8DREQgHPErWgPuRwNRijT7d9ZiN3o0LkXCCRI4gTivej9xlZkPt8-zpWjit0tqWutD25aGXZBpW2W1iy8ts0Ju1fdNzydt1SppiT20FLpO-tK2_YnTDUVe6DGaa-X2vfsrFGmd9oxWzPFZto_68U8rJraho3JGLYKEDs3FHRj5Z_DJQfRTq2Mo8Ofvh89XU4ex9eD2d3VdHw2G5SxTHEgQGYwUmUhEsyEiFNYV8ElpiiozhCKGpOKg4C6kEpQhhJByCKhBHiB8X50vPFtO_u6IOfzF7vowr0uxyROszi4QmANN6wy_Og6qvO203PV9TmHfB17vo49_409CORGsNKG-n_Y-eT2cfKn_QJRIYiQ</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Quarti, Michael</creator><creator>Bessler, Wolfgang G.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5550-5602</orcidid><orcidid>https://orcid.org/0000-0001-8037-9046</orcidid></search><sort><creationdate>202106</creationdate><title>Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode</title><author>Quarti, Michael ; Bessler, Wolfgang G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3962-809704acb8527883606060b192628ef720bf25d1080fb9a8e7292089b5e501b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>blend electrodes</topic><topic>Cathodes</topic><topic>Deconvolution</topic><topic>Design parameters</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Impedance</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>overpotentials</topic><topic>partial electrochemical impedance spectroscopy</topic><topic>R&D</topic><topic>Research & development</topic><topic>sensitivity analyses</topic><topic>Sensitivity analysis</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Three dimensional models</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quarti, Michael</creatorcontrib><creatorcontrib>Bessler, Wolfgang G.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quarti, Michael</au><au>Bessler, Wolfgang G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2021-06</date><risdate>2021</risdate><volume>9</volume><issue>6</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Lithium‐ion battery cells are multiscale and multiphysics systems. Design and material parameters influence the macroscopically observable cell performance in a complex and nonlinear way. Herein, the development and application of three methodologies for model‐based interpretation and visualization of these influences are presented: 1) deconvolution of overpotential contributions, including ohmic, concentration, and activation overpotentials of the various cell components; 2) partial electrochemical impedance spectroscopy, allowing a direct visualization of the origin of different impedance features; and 3) sensitivity analyses, allowing a systematic assessment of the influence of cell parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell. The cell features a blend cathode. The two blend components show strong coupling, which can be observed and interpreted using the results of overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis. The presented methods are useful tools for model‐supported lithium‐ion cell research and development.
This article describes the development and application of three methodologies for the model‐based investigation of lithium‐ion cell behavior: 1) deconvolution of overpotential contributions; 2) partial electrochemical impedance spectroscopy; and 3) sensitivity analyses of design and material parameters on capacity, internal resistance, and impedance. The methods are applied to a previously developed and validated pseudo‐3D model of a high‐power lithium‐ion pouch cell.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202001122</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5550-5602</orcidid><orcidid>https://orcid.org/0000-0001-8037-9046</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2021-06, Vol.9 (6), p.n/a |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_journals_2536737880 |
source | Wiley Journals |
subjects | blend electrodes Cathodes Deconvolution Design parameters Electrochemical impedance spectroscopy Electrochemistry Impedance Lithium Lithium-ion batteries Mathematical models overpotentials partial electrochemical impedance spectroscopy R&D Research & development sensitivity analyses Sensitivity analysis Spectroscopic analysis Spectroscopy Spectrum analysis Three dimensional models Visualization |
title | Model‐Based Overpotential Deconvolution, Partial Impedance Spectroscopy, and Sensitivity Analysis of a Lithium‐Ion Cell with Blend Cathode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%E2%80%90Based%20Overpotential%20Deconvolution,%20Partial%20Impedance%20Spectroscopy,%20and%20Sensitivity%20Analysis%20of%20a%20Lithium%E2%80%90Ion%20Cell%20with%20Blend%20Cathode&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Quarti,%20Michael&rft.date=2021-06&rft.volume=9&rft.issue=6&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202001122&rft_dat=%3Cproquest_cross%3E2536737880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536737880&rft_id=info:pmid/&rfr_iscdi=true |