Combining case-control studies for identifiability and efficiency improvement in logistic regression
Can two separate case-control studies, one about Hepatitis disease and the other about Fibrosis, for example, be combined together? It would be hugely beneficial if two or more separately conducted case-control studies, even for entirely irrelevant purposes, can be merged together with a unified ana...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tang, Wenlu Lin, Yuanyuan Dai, Linlin Chen, Kani |
description | Can two separate case-control studies, one about Hepatitis disease and the other about Fibrosis, for example, be combined together? It would be hugely beneficial if two or more separately conducted case-control studies, even for entirely irrelevant purposes, can be merged together with a unified analysis that produces better statistical properties, e.g., more accurate estimation of parameters. In this paper, we show that, when using the popular logistic regression model, the combined/integrative analysis produces a more accurate estimation of the slope parameters than the single case-control study. It is known that, in a single logistic case-control study, the intercept is not identifiable, contrary to prospective studies. In combined case-control studies, however, the intercepts are proved to be identifiable under mild conditions. The resulting maximum likelihood estimates of the intercepts and slopes are proved to be consistent and asymptotically normal, with asymptotic variances achieving the semiparametric efficiency lower bound. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2536671661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536671661</sourcerecordid><originalsourceid>FETCH-proquest_journals_25366716613</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAIMgWLR_WPBcaBMbvYviA7xLTTdlS7vRbCr09_bgAzzNYWZWKtPGVMXpoPVG5SJ9WZbaHnVdm0y15zA-iYk7cI1g4QKnGAaQNLWEAj5EoBY5kafmSQOlGRpuAb0nR8huBhpfMXxwXCIghiF0JIkcROwiilDgnVr7ZhDMf9yq_fVyP9-KZXxPKOnRhynyoh66NtYeK2sr81_1Bd6zR9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536671661</pqid></control><display><type>article</type><title>Combining case-control studies for identifiability and efficiency improvement in logistic regression</title><source>Free E- Journals</source><creator>Tang, Wenlu ; Lin, Yuanyuan ; Dai, Linlin ; Chen, Kani</creator><creatorcontrib>Tang, Wenlu ; Lin, Yuanyuan ; Dai, Linlin ; Chen, Kani</creatorcontrib><description>Can two separate case-control studies, one about Hepatitis disease and the other about Fibrosis, for example, be combined together? It would be hugely beneficial if two or more separately conducted case-control studies, even for entirely irrelevant purposes, can be merged together with a unified analysis that produces better statistical properties, e.g., more accurate estimation of parameters. In this paper, we show that, when using the popular logistic regression model, the combined/integrative analysis produces a more accurate estimation of the slope parameters than the single case-control study. It is known that, in a single logistic case-control study, the intercept is not identifiable, contrary to prospective studies. In combined case-control studies, however, the intercepts are proved to be identifiable under mild conditions. The resulting maximum likelihood estimates of the intercepts and slopes are proved to be consistent and asymptotically normal, with asymptotic variances achieving the semiparametric efficiency lower bound.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Fibrosis ; Hepatitis ; Lower bounds ; Maximum likelihood estimates ; Parameter estimation ; Regression models ; Statistical analysis</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tang, Wenlu</creatorcontrib><creatorcontrib>Lin, Yuanyuan</creatorcontrib><creatorcontrib>Dai, Linlin</creatorcontrib><creatorcontrib>Chen, Kani</creatorcontrib><title>Combining case-control studies for identifiability and efficiency improvement in logistic regression</title><title>arXiv.org</title><description>Can two separate case-control studies, one about Hepatitis disease and the other about Fibrosis, for example, be combined together? It would be hugely beneficial if two or more separately conducted case-control studies, even for entirely irrelevant purposes, can be merged together with a unified analysis that produces better statistical properties, e.g., more accurate estimation of parameters. In this paper, we show that, when using the popular logistic regression model, the combined/integrative analysis produces a more accurate estimation of the slope parameters than the single case-control study. It is known that, in a single logistic case-control study, the intercept is not identifiable, contrary to prospective studies. In combined case-control studies, however, the intercepts are proved to be identifiable under mild conditions. The resulting maximum likelihood estimates of the intercepts and slopes are proved to be consistent and asymptotically normal, with asymptotic variances achieving the semiparametric efficiency lower bound.</description><subject>Asymptotic properties</subject><subject>Fibrosis</subject><subject>Hepatitis</subject><subject>Lower bounds</subject><subject>Maximum likelihood estimates</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0EKwjAQAIMgWLR_WPBcaBMbvYviA7xLTTdlS7vRbCr09_bgAzzNYWZWKtPGVMXpoPVG5SJ9WZbaHnVdm0y15zA-iYk7cI1g4QKnGAaQNLWEAj5EoBY5kafmSQOlGRpuAb0nR8huBhpfMXxwXCIghiF0JIkcROwiilDgnVr7ZhDMf9yq_fVyP9-KZXxPKOnRhynyoh66NtYeK2sr81_1Bd6zR9U</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Tang, Wenlu</creator><creator>Lin, Yuanyuan</creator><creator>Dai, Linlin</creator><creator>Chen, Kani</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210602</creationdate><title>Combining case-control studies for identifiability and efficiency improvement in logistic regression</title><author>Tang, Wenlu ; Lin, Yuanyuan ; Dai, Linlin ; Chen, Kani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25366716613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Fibrosis</topic><topic>Hepatitis</topic><topic>Lower bounds</topic><topic>Maximum likelihood estimates</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Wenlu</creatorcontrib><creatorcontrib>Lin, Yuanyuan</creatorcontrib><creatorcontrib>Dai, Linlin</creatorcontrib><creatorcontrib>Chen, Kani</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Wenlu</au><au>Lin, Yuanyuan</au><au>Dai, Linlin</au><au>Chen, Kani</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Combining case-control studies for identifiability and efficiency improvement in logistic regression</atitle><jtitle>arXiv.org</jtitle><date>2021-06-02</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Can two separate case-control studies, one about Hepatitis disease and the other about Fibrosis, for example, be combined together? It would be hugely beneficial if two or more separately conducted case-control studies, even for entirely irrelevant purposes, can be merged together with a unified analysis that produces better statistical properties, e.g., more accurate estimation of parameters. In this paper, we show that, when using the popular logistic regression model, the combined/integrative analysis produces a more accurate estimation of the slope parameters than the single case-control study. It is known that, in a single logistic case-control study, the intercept is not identifiable, contrary to prospective studies. In combined case-control studies, however, the intercepts are proved to be identifiable under mild conditions. The resulting maximum likelihood estimates of the intercepts and slopes are proved to be consistent and asymptotically normal, with asymptotic variances achieving the semiparametric efficiency lower bound.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2536671661 |
source | Free E- Journals |
subjects | Asymptotic properties Fibrosis Hepatitis Lower bounds Maximum likelihood estimates Parameter estimation Regression models Statistical analysis |
title | Combining case-control studies for identifiability and efficiency improvement in logistic regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Combining%20case-control%20studies%20for%20identifiability%20and%20efficiency%20improvement%20in%20logistic%20regression&rft.jtitle=arXiv.org&rft.au=Tang,%20Wenlu&rft.date=2021-06-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2536671661%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536671661&rft_id=info:pmid/&rfr_iscdi=true |