Research on double-rotor dynamic grinding model and simulation algorithm for crankshaft main journal

Crankshaft is a core part of automobile engine to bear impact load and transmit power. Precision grinding is the most important machining method to achieve high precision of crankshaft main journal. Although many scholars have established various simulation models in the field of cylindrical grindin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-06, Vol.114 (11-12), p.3391-3400
Hauptverfasser: Zeng, Xu, Xiong, Wanli, Sun, Wenbiao, Ye, Hongyan, Tang, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3400
container_issue 11-12
container_start_page 3391
container_title International journal of advanced manufacturing technology
container_volume 114
creator Zeng, Xu
Xiong, Wanli
Sun, Wenbiao
Ye, Hongyan
Tang, Zhiyong
description Crankshaft is a core part of automobile engine to bear impact load and transmit power. Precision grinding is the most important machining method to achieve high precision of crankshaft main journal. Although many scholars have established various simulation models in the field of cylindrical grinding, it is difficult to carry out effective quantitative simulation for a given crankshaft main journal grinding system. Aiming at the shortcomings of the existing models, a double-rotor dynamic model is proposed, which considers the interaction between the grinding wheel and the main journal, and iterative algorithm is adopted to simulate material removal and roundness change in the grinding process of the main journal. The normal force between grinding wheel and the main journal is defined in detail in the algorithm, which is closer to the actual grinding process. For a given crankshaft grinding system, different grinding strategies of the main journal are quantitatively simulated by using the model. The proposed model and algorithm are validated by experiments, which can provide a basic model for the further study of the crankshaft cylindrical grinding system.
doi_str_mv 10.1007/s00170-021-06761-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536656922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536656922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fe0fb6b3156ee5fadaf1638e033152aa58a0d9a044fd4491763117146ee8a78f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU8Bz9FM06btURa_YEEQPYfZJul2bZM1aQ_77412wZungeG9YXiEXAO_Bc7Lu8g5lJzxDBiXpQRWn5AF5EIwwaE4JQueyYqJUlbn5CLGXcIlyGpB9JuJBkOzpd5R7adNb1jwow9UHxwOXUPb0DnduZYOXpueotM0dsPU49glBfvWh27cDtQmpwnoPuMW7UgH7Bzd-Sk47C_JmcU-mqvjXJKPx4f31TNbvz69rO7XrBFQj8wabjdyI6CQxhQWNVqQojJcpFWGWFTIdY08z63O8xpKKQBKyBNdYVlZsSQ389198F-TiaM6PhBVVggpC1lnWaKymWqCjzEYq_ahGzAcFHD1U1PNNVWqqX5rqjpJYpZigl1rwt_pf6xvoux47A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536656922</pqid></control><display><type>article</type><title>Research on double-rotor dynamic grinding model and simulation algorithm for crankshaft main journal</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zeng, Xu ; Xiong, Wanli ; Sun, Wenbiao ; Ye, Hongyan ; Tang, Zhiyong</creator><creatorcontrib>Zeng, Xu ; Xiong, Wanli ; Sun, Wenbiao ; Ye, Hongyan ; Tang, Zhiyong</creatorcontrib><description>Crankshaft is a core part of automobile engine to bear impact load and transmit power. Precision grinding is the most important machining method to achieve high precision of crankshaft main journal. Although many scholars have established various simulation models in the field of cylindrical grinding, it is difficult to carry out effective quantitative simulation for a given crankshaft main journal grinding system. Aiming at the shortcomings of the existing models, a double-rotor dynamic model is proposed, which considers the interaction between the grinding wheel and the main journal, and iterative algorithm is adopted to simulate material removal and roundness change in the grinding process of the main journal. The normal force between grinding wheel and the main journal is defined in detail in the algorithm, which is closer to the actual grinding process. For a given crankshaft grinding system, different grinding strategies of the main journal are quantitatively simulated by using the model. The proposed model and algorithm are validated by experiments, which can provide a basic model for the further study of the crankshaft cylindrical grinding system.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-06761-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Automotive engines ; CAE) and Design ; Computer-Aided Engineering (CAD ; Crankshafts ; Cylindrical grinding ; Dynamic models ; Engineering ; Grinding wheels ; Impact loads ; Industrial and Production Engineering ; Iterative algorithms ; Iterative methods ; Machining ; Mechanical Engineering ; Media Management ; Original Article ; Rotors ; Roundness ; Simulation ; Trouble shooting</subject><ispartof>International journal of advanced manufacturing technology, 2021-06, Vol.114 (11-12), p.3391-3400</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fe0fb6b3156ee5fadaf1638e033152aa58a0d9a044fd4491763117146ee8a78f3</citedby><cites>FETCH-LOGICAL-c319t-fe0fb6b3156ee5fadaf1638e033152aa58a0d9a044fd4491763117146ee8a78f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-06761-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-06761-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zeng, Xu</creatorcontrib><creatorcontrib>Xiong, Wanli</creatorcontrib><creatorcontrib>Sun, Wenbiao</creatorcontrib><creatorcontrib>Ye, Hongyan</creatorcontrib><creatorcontrib>Tang, Zhiyong</creatorcontrib><title>Research on double-rotor dynamic grinding model and simulation algorithm for crankshaft main journal</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Crankshaft is a core part of automobile engine to bear impact load and transmit power. Precision grinding is the most important machining method to achieve high precision of crankshaft main journal. Although many scholars have established various simulation models in the field of cylindrical grinding, it is difficult to carry out effective quantitative simulation for a given crankshaft main journal grinding system. Aiming at the shortcomings of the existing models, a double-rotor dynamic model is proposed, which considers the interaction between the grinding wheel and the main journal, and iterative algorithm is adopted to simulate material removal and roundness change in the grinding process of the main journal. The normal force between grinding wheel and the main journal is defined in detail in the algorithm, which is closer to the actual grinding process. For a given crankshaft grinding system, different grinding strategies of the main journal are quantitatively simulated by using the model. The proposed model and algorithm are validated by experiments, which can provide a basic model for the further study of the crankshaft cylindrical grinding system.</description><subject>Algorithms</subject><subject>Automotive engines</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Crankshafts</subject><subject>Cylindrical grinding</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Grinding wheels</subject><subject>Impact loads</subject><subject>Industrial and Production Engineering</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Machining</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Rotors</subject><subject>Roundness</subject><subject>Simulation</subject><subject>Trouble shooting</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQQIMouK7-AU8Bz9FM06btURa_YEEQPYfZJul2bZM1aQ_77412wZungeG9YXiEXAO_Bc7Lu8g5lJzxDBiXpQRWn5AF5EIwwaE4JQueyYqJUlbn5CLGXcIlyGpB9JuJBkOzpd5R7adNb1jwow9UHxwOXUPb0DnduZYOXpueotM0dsPU49glBfvWh27cDtQmpwnoPuMW7UgH7Bzd-Sk47C_JmcU-mqvjXJKPx4f31TNbvz69rO7XrBFQj8wabjdyI6CQxhQWNVqQojJcpFWGWFTIdY08z63O8xpKKQBKyBNdYVlZsSQ389198F-TiaM6PhBVVggpC1lnWaKymWqCjzEYq_ahGzAcFHD1U1PNNVWqqX5rqjpJYpZigl1rwt_pf6xvoux47A</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zeng, Xu</creator><creator>Xiong, Wanli</creator><creator>Sun, Wenbiao</creator><creator>Ye, Hongyan</creator><creator>Tang, Zhiyong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210601</creationdate><title>Research on double-rotor dynamic grinding model and simulation algorithm for crankshaft main journal</title><author>Zeng, Xu ; Xiong, Wanli ; Sun, Wenbiao ; Ye, Hongyan ; Tang, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fe0fb6b3156ee5fadaf1638e033152aa58a0d9a044fd4491763117146ee8a78f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automotive engines</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Crankshafts</topic><topic>Cylindrical grinding</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Grinding wheels</topic><topic>Impact loads</topic><topic>Industrial and Production Engineering</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Machining</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Rotors</topic><topic>Roundness</topic><topic>Simulation</topic><topic>Trouble shooting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Xu</creatorcontrib><creatorcontrib>Xiong, Wanli</creatorcontrib><creatorcontrib>Sun, Wenbiao</creatorcontrib><creatorcontrib>Ye, Hongyan</creatorcontrib><creatorcontrib>Tang, Zhiyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Xu</au><au>Xiong, Wanli</au><au>Sun, Wenbiao</au><au>Ye, Hongyan</au><au>Tang, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on double-rotor dynamic grinding model and simulation algorithm for crankshaft main journal</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>114</volume><issue>11-12</issue><spage>3391</spage><epage>3400</epage><pages>3391-3400</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Crankshaft is a core part of automobile engine to bear impact load and transmit power. Precision grinding is the most important machining method to achieve high precision of crankshaft main journal. Although many scholars have established various simulation models in the field of cylindrical grinding, it is difficult to carry out effective quantitative simulation for a given crankshaft main journal grinding system. Aiming at the shortcomings of the existing models, a double-rotor dynamic model is proposed, which considers the interaction between the grinding wheel and the main journal, and iterative algorithm is adopted to simulate material removal and roundness change in the grinding process of the main journal. The normal force between grinding wheel and the main journal is defined in detail in the algorithm, which is closer to the actual grinding process. For a given crankshaft grinding system, different grinding strategies of the main journal are quantitatively simulated by using the model. The proposed model and algorithm are validated by experiments, which can provide a basic model for the further study of the crankshaft cylindrical grinding system.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-06761-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2021-06, Vol.114 (11-12), p.3391-3400
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2536656922
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Automotive engines
CAE) and Design
Computer-Aided Engineering (CAD
Crankshafts
Cylindrical grinding
Dynamic models
Engineering
Grinding wheels
Impact loads
Industrial and Production Engineering
Iterative algorithms
Iterative methods
Machining
Mechanical Engineering
Media Management
Original Article
Rotors
Roundness
Simulation
Trouble shooting
title Research on double-rotor dynamic grinding model and simulation algorithm for crankshaft main journal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20double-rotor%20dynamic%20grinding%20model%20and%20simulation%20algorithm%20for%20crankshaft%20main%20journal&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zeng,%20Xu&rft.date=2021-06-01&rft.volume=114&rft.issue=11-12&rft.spage=3391&rft.epage=3400&rft.pages=3391-3400&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-06761-9&rft_dat=%3Cproquest_cross%3E2536656922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536656922&rft_id=info:pmid/&rfr_iscdi=true