Approximating fractional derivative of Faddeeva function, Gaussian function, and Dawson's integral

A new method for approximating fractional derivatives of Faddeeva function, Gaussian function, and Dawson's integral are presented. Unlike previous approaches, which are dominantly based on some discretization of Riemann‐Liouville integral over a finite interval using polynomial or discrete Fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-07, Vol.44 (10), p.8042-8056
1. Verfasser: Yarman, Can Evren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8056
container_issue 10
container_start_page 8042
container_title Mathematical methods in the applied sciences
container_volume 44
creator Yarman, Can Evren
description A new method for approximating fractional derivatives of Faddeeva function, Gaussian function, and Dawson's integral are presented. Unlike previous approaches, which are dominantly based on some discretization of Riemann‐Liouville integral over a finite interval using polynomial or discrete Fourier basis, we take an alternative approach that is based on expressing computation of Riemann‐Liouville definition of the fractional integral for the semi‐infinite axis in terms of a moment problem. As a result, fractional derivatives of Faddeeva function, Gaussian function, and Dawson's integral are expressed as a weighted sum of complex scaled Gaussian and Dawson's integral. Error bounds for the approximations are provided. Another feature of the proposed method compared with the previous approaches is it can be extended to approximate partial derivatives with respect to the order of the fractional derivative that can be used in PDE constraint optimization problems.
doi_str_mv 10.1002/mma.5679
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536639522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536639522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-f4e29bed41fdba27b0cd215551b4257ff71b4875e8fd6339432dc9994e8469293</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKfgTwh40IOdSZo0zXFMN4UNL3oOaZOMjC6dSbu5f2-2efDi6ft4eXjheQG4xWiEESJP67UasYKLMzDASIgMU16cgwHCHGWUYHoJrmJcIYRKjMkAVOPNJrTfbq0655fQBlV3rvWqgdoEt03p1sDWwqnS2pitgrb3R-IRzlQfo1P-T6S8hs9qF1t_H6HznVkG1VyDC6uaaG5-7xB8Tl8-Jq_Z_H32NhnPs5qIXGSWGiIqoym2ulKEV6jWBDPGcEUJ49by9JScmdLqIs8FzYmuhRDUlLQQqWII7k69SeirN7GTq7YPSSVKwvKiyAUjJFEPJ6oObYzBWLkJyT7sJUbysKBMC8rDggnNTujONWb_LycXi_GR_wErcXI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536639522</pqid></control><display><type>article</type><title>Approximating fractional derivative of Faddeeva function, Gaussian function, and Dawson's integral</title><source>Wiley Journals</source><creator>Yarman, Can Evren</creator><creatorcontrib>Yarman, Can Evren</creatorcontrib><description>A new method for approximating fractional derivatives of Faddeeva function, Gaussian function, and Dawson's integral are presented. Unlike previous approaches, which are dominantly based on some discretization of Riemann‐Liouville integral over a finite interval using polynomial or discrete Fourier basis, we take an alternative approach that is based on expressing computation of Riemann‐Liouville definition of the fractional integral for the semi‐infinite axis in terms of a moment problem. As a result, fractional derivatives of Faddeeva function, Gaussian function, and Dawson's integral are expressed as a weighted sum of complex scaled Gaussian and Dawson's integral. Error bounds for the approximations are provided. Another feature of the proposed method compared with the previous approaches is it can be extended to approximate partial derivatives with respect to the order of the fractional derivative that can be used in PDE constraint optimization problems.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5679</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>26A33 fractional derivatives and integrals ; 33F05 numerical approximation and evaluation ; 44A60 moment problems ; Approximation ; Dawson ; Derivatives ; Faddeeva ; Fractional calculus ; Gaussian ; Integrals ; Liouville‐Caputo fractional derivative ; Optimization ; Polynomials</subject><ispartof>Mathematical methods in the applied sciences, 2021-07, Vol.44 (10), p.8042-8056</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-f4e29bed41fdba27b0cd215551b4257ff71b4875e8fd6339432dc9994e8469293</citedby><cites>FETCH-LOGICAL-c2939-f4e29bed41fdba27b0cd215551b4257ff71b4875e8fd6339432dc9994e8469293</cites><orcidid>0000-0002-1612-6658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5679$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5679$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yarman, Can Evren</creatorcontrib><title>Approximating fractional derivative of Faddeeva function, Gaussian function, and Dawson's integral</title><title>Mathematical methods in the applied sciences</title><description>A new method for approximating fractional derivatives of Faddeeva function, Gaussian function, and Dawson's integral are presented. Unlike previous approaches, which are dominantly based on some discretization of Riemann‐Liouville integral over a finite interval using polynomial or discrete Fourier basis, we take an alternative approach that is based on expressing computation of Riemann‐Liouville definition of the fractional integral for the semi‐infinite axis in terms of a moment problem. As a result, fractional derivatives of Faddeeva function, Gaussian function, and Dawson's integral are expressed as a weighted sum of complex scaled Gaussian and Dawson's integral. Error bounds for the approximations are provided. Another feature of the proposed method compared with the previous approaches is it can be extended to approximate partial derivatives with respect to the order of the fractional derivative that can be used in PDE constraint optimization problems.</description><subject>26A33 fractional derivatives and integrals</subject><subject>33F05 numerical approximation and evaluation</subject><subject>44A60 moment problems</subject><subject>Approximation</subject><subject>Dawson</subject><subject>Derivatives</subject><subject>Faddeeva</subject><subject>Fractional calculus</subject><subject>Gaussian</subject><subject>Integrals</subject><subject>Liouville‐Caputo fractional derivative</subject><subject>Optimization</subject><subject>Polynomials</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKfgTwh40IOdSZo0zXFMN4UNL3oOaZOMjC6dSbu5f2-2efDi6ft4eXjheQG4xWiEESJP67UasYKLMzDASIgMU16cgwHCHGWUYHoJrmJcIYRKjMkAVOPNJrTfbq0655fQBlV3rvWqgdoEt03p1sDWwqnS2pitgrb3R-IRzlQfo1P-T6S8hs9qF1t_H6HznVkG1VyDC6uaaG5-7xB8Tl8-Jq_Z_H32NhnPs5qIXGSWGiIqoym2ulKEV6jWBDPGcEUJ49by9JScmdLqIs8FzYmuhRDUlLQQqWII7k69SeirN7GTq7YPSSVKwvKiyAUjJFEPJ6oObYzBWLkJyT7sJUbysKBMC8rDggnNTujONWb_LycXi_GR_wErcXI0</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Yarman, Can Evren</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1612-6658</orcidid></search><sort><creationdate>20210715</creationdate><title>Approximating fractional derivative of Faddeeva function, Gaussian function, and Dawson's integral</title><author>Yarman, Can Evren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-f4e29bed41fdba27b0cd215551b4257ff71b4875e8fd6339432dc9994e8469293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>26A33 fractional derivatives and integrals</topic><topic>33F05 numerical approximation and evaluation</topic><topic>44A60 moment problems</topic><topic>Approximation</topic><topic>Dawson</topic><topic>Derivatives</topic><topic>Faddeeva</topic><topic>Fractional calculus</topic><topic>Gaussian</topic><topic>Integrals</topic><topic>Liouville‐Caputo fractional derivative</topic><topic>Optimization</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yarman, Can Evren</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yarman, Can Evren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating fractional derivative of Faddeeva function, Gaussian function, and Dawson's integral</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>44</volume><issue>10</issue><spage>8042</spage><epage>8056</epage><pages>8042-8056</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>A new method for approximating fractional derivatives of Faddeeva function, Gaussian function, and Dawson's integral are presented. Unlike previous approaches, which are dominantly based on some discretization of Riemann‐Liouville integral over a finite interval using polynomial or discrete Fourier basis, we take an alternative approach that is based on expressing computation of Riemann‐Liouville definition of the fractional integral for the semi‐infinite axis in terms of a moment problem. As a result, fractional derivatives of Faddeeva function, Gaussian function, and Dawson's integral are expressed as a weighted sum of complex scaled Gaussian and Dawson's integral. Error bounds for the approximations are provided. Another feature of the proposed method compared with the previous approaches is it can be extended to approximate partial derivatives with respect to the order of the fractional derivative that can be used in PDE constraint optimization problems.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5679</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1612-6658</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-07, Vol.44 (10), p.8042-8056
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2536639522
source Wiley Journals
subjects 26A33 fractional derivatives and integrals
33F05 numerical approximation and evaluation
44A60 moment problems
Approximation
Dawson
Derivatives
Faddeeva
Fractional calculus
Gaussian
Integrals
Liouville‐Caputo fractional derivative
Optimization
Polynomials
title Approximating fractional derivative of Faddeeva function, Gaussian function, and Dawson's integral
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20fractional%20derivative%20of%20Faddeeva%20function,%20Gaussian%20function,%20and%20Dawson's%20integral&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Yarman,%20Can%20Evren&rft.date=2021-07-15&rft.volume=44&rft.issue=10&rft.spage=8042&rft.epage=8056&rft.pages=8042-8056&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5679&rft_dat=%3Cproquest_cross%3E2536639522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536639522&rft_id=info:pmid/&rfr_iscdi=true