Theory of magnetism in the van der Waals magnet CrI3

We study the microscopical origin of anisotropic ferromagnetism in the van der Waals magnet CrI3. We conclude that the nearest-neighbor exchange is well described by the Heisenberg-Kitaev- Γ (HK Γ) model, and we also find a nonzero Dzyaloshinskii-Moriya interaction (DMI) on next-nearest neighbors. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-05, Vol.103 (17)
Hauptverfasser: Jaeschke-Ubiergo, R, Morell, E Suárez, Nunez, A S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Physical review. B
container_volume 103
creator Jaeschke-Ubiergo, R
Morell, E Suárez
Nunez, A S
description We study the microscopical origin of anisotropic ferromagnetism in the van der Waals magnet CrI3. We conclude that the nearest-neighbor exchange is well described by the Heisenberg-Kitaev- Γ (HK Γ) model, and we also find a nonzero Dzyaloshinskii-Moriya interaction (DMI) on next-nearest neighbors. Both Kitaev and DMI are known to generate a nontrivial topology of the magnons in the honeycomb lattice and have been used separately to describe the low-energy regime of this material. We discuss how including one or the other leads to different signs of the Chern number. Furthermore, the topological gap at the K point seems to be mainly produced by the DMI, despite its being one order of magnitude smaller than Kitaev. Finally, we show that, by applying an external electric field perpendicular to the crystal plane, it is possible to induce DMI on nearest neighbors, and this could have consequences in noncollinear spin textures, such as domain walls and skyrmions.
doi_str_mv 10.1103/PhysRevB.103.174410
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2536546625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536546625</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-969bfaae8fdbf27b5c69f76762604f8461a258809beaf2a5e6a8654103345c743</originalsourceid><addsrcrecordid>eNo9jk9LAzEQxYMoWGo_gZeA510n_ybJURe1hYIiFY9ltk3cFrtbN9tCv70Bi6ffvDfDvMfYrYBSCFD3b80pvYfjY5lFKazWAi7YSGr0hffoL_9nA9dsktIWAASCt-BHTC-a0PUn3kW-o682DJu045uWD03gR2r5OvT8k-g7nde86mfqhl3FbIXJmWP28fy0qKbF_PVlVj3Mi71waihyeB2JgovrOkpbmxX6aNGiRNDRaRQkjXPg60BRkglIDk2ur5Q2K6vVmN39_d333c8hpGG57Q59myOX0qh8ipj5C8xRR-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536546625</pqid></control><display><type>article</type><title>Theory of magnetism in the van der Waals magnet CrI3</title><source>American Physical Society Journals</source><creator>Jaeschke-Ubiergo, R ; Morell, E Suárez ; Nunez, A S</creator><creatorcontrib>Jaeschke-Ubiergo, R ; Morell, E Suárez ; Nunez, A S</creatorcontrib><description>We study the microscopical origin of anisotropic ferromagnetism in the van der Waals magnet CrI3. We conclude that the nearest-neighbor exchange is well described by the Heisenberg-Kitaev- Γ (HK Γ) model, and we also find a nonzero Dzyaloshinskii-Moriya interaction (DMI) on next-nearest neighbors. Both Kitaev and DMI are known to generate a nontrivial topology of the magnons in the honeycomb lattice and have been used separately to describe the low-energy regime of this material. We discuss how including one or the other leads to different signs of the Chern number. Furthermore, the topological gap at the K point seems to be mainly produced by the DMI, despite its being one order of magnitude smaller than Kitaev. Finally, we show that, by applying an external electric field perpendicular to the crystal plane, it is possible to induce DMI on nearest neighbors, and this could have consequences in noncollinear spin textures, such as domain walls and skyrmions.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.174410</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Domain walls ; Electric fields ; Ferromagnetism ; Hypothetical particles ; Magnetism ; Magnons ; Particle theory ; Topology</subject><ispartof>Physical review. B, 2021-05, Vol.103 (17)</ispartof><rights>Copyright American Physical Society May 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jaeschke-Ubiergo, R</creatorcontrib><creatorcontrib>Morell, E Suárez</creatorcontrib><creatorcontrib>Nunez, A S</creatorcontrib><title>Theory of magnetism in the van der Waals magnet CrI3</title><title>Physical review. B</title><description>We study the microscopical origin of anisotropic ferromagnetism in the van der Waals magnet CrI3. We conclude that the nearest-neighbor exchange is well described by the Heisenberg-Kitaev- Γ (HK Γ) model, and we also find a nonzero Dzyaloshinskii-Moriya interaction (DMI) on next-nearest neighbors. Both Kitaev and DMI are known to generate a nontrivial topology of the magnons in the honeycomb lattice and have been used separately to describe the low-energy regime of this material. We discuss how including one or the other leads to different signs of the Chern number. Furthermore, the topological gap at the K point seems to be mainly produced by the DMI, despite its being one order of magnitude smaller than Kitaev. Finally, we show that, by applying an external electric field perpendicular to the crystal plane, it is possible to induce DMI on nearest neighbors, and this could have consequences in noncollinear spin textures, such as domain walls and skyrmions.</description><subject>Domain walls</subject><subject>Electric fields</subject><subject>Ferromagnetism</subject><subject>Hypothetical particles</subject><subject>Magnetism</subject><subject>Magnons</subject><subject>Particle theory</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jk9LAzEQxYMoWGo_gZeA510n_ybJURe1hYIiFY9ltk3cFrtbN9tCv70Bi6ffvDfDvMfYrYBSCFD3b80pvYfjY5lFKazWAi7YSGr0hffoL_9nA9dsktIWAASCt-BHTC-a0PUn3kW-o682DJu045uWD03gR2r5OvT8k-g7nde86mfqhl3FbIXJmWP28fy0qKbF_PVlVj3Mi71waihyeB2JgovrOkpbmxX6aNGiRNDRaRQkjXPg60BRkglIDk2ur5Q2K6vVmN39_d333c8hpGG57Q59myOX0qh8ipj5C8xRR-Y</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Jaeschke-Ubiergo, R</creator><creator>Morell, E Suárez</creator><creator>Nunez, A S</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210510</creationdate><title>Theory of magnetism in the van der Waals magnet CrI3</title><author>Jaeschke-Ubiergo, R ; Morell, E Suárez ; Nunez, A S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-969bfaae8fdbf27b5c69f76762604f8461a258809beaf2a5e6a8654103345c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Domain walls</topic><topic>Electric fields</topic><topic>Ferromagnetism</topic><topic>Hypothetical particles</topic><topic>Magnetism</topic><topic>Magnons</topic><topic>Particle theory</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaeschke-Ubiergo, R</creatorcontrib><creatorcontrib>Morell, E Suárez</creatorcontrib><creatorcontrib>Nunez, A S</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaeschke-Ubiergo, R</au><au>Morell, E Suárez</au><au>Nunez, A S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of magnetism in the van der Waals magnet CrI3</atitle><jtitle>Physical review. B</jtitle><date>2021-05-10</date><risdate>2021</risdate><volume>103</volume><issue>17</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study the microscopical origin of anisotropic ferromagnetism in the van der Waals magnet CrI3. We conclude that the nearest-neighbor exchange is well described by the Heisenberg-Kitaev- Γ (HK Γ) model, and we also find a nonzero Dzyaloshinskii-Moriya interaction (DMI) on next-nearest neighbors. Both Kitaev and DMI are known to generate a nontrivial topology of the magnons in the honeycomb lattice and have been used separately to describe the low-energy regime of this material. We discuss how including one or the other leads to different signs of the Chern number. Furthermore, the topological gap at the K point seems to be mainly produced by the DMI, despite its being one order of magnitude smaller than Kitaev. Finally, we show that, by applying an external electric field perpendicular to the crystal plane, it is possible to induce DMI on nearest neighbors, and this could have consequences in noncollinear spin textures, such as domain walls and skyrmions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.174410</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-05, Vol.103 (17)
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2536546625
source American Physical Society Journals
subjects Domain walls
Electric fields
Ferromagnetism
Hypothetical particles
Magnetism
Magnons
Particle theory
Topology
title Theory of magnetism in the van der Waals magnet CrI3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20magnetism%20in%20the%20van%20der%20Waals%20magnet%20CrI3&rft.jtitle=Physical%20review.%20B&rft.au=Jaeschke-Ubiergo,%20R&rft.date=2021-05-10&rft.volume=103&rft.issue=17&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.174410&rft_dat=%3Cproquest%3E2536546625%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536546625&rft_id=info:pmid/&rfr_iscdi=true