Many-body localization: Transitions in spin models

We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-05, Vol.103 (17), Article 174203
Hauptverfasser: Schliemann, John, Costa, João Vitor I., Wenk, Paul, Egues, J. Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Physical review. B
container_volume 103
creator Schliemann, John
Costa, João Vitor I.
Wenk, Paul
Egues, J. Carlos
description We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random matrix techniques. Particular attention is paid to the sample-to-sample variance (Δsr)2 of the averaged consecutive-gap ratio ⟨r⟩ for different disorder realizations. For both types of systems and spin lengths we find a maximum in Δsr as a function of disorder strength, accompanied by an inflection point of ⟨r⟩, signaling the transition from ergodicity to many-body localization. The critical disorder strength is found to be somewhat smaller than the values reported in the recent literature. Further information about the transitions can be gained from the probability distribution of expectation values within a given disorder realization.
doi_str_mv 10.1103/PhysRevB.103.174203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536546606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536546606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-2b6ca1c4a4aa51fd918eab8e815776c4f212638017f28a69e3b44549cb4dec683</originalsourceid><addsrcrecordid>eNo9kE9LxDAUxIMouKz7CbwUPLfm5W_jTRddhRVF1nNI0xS7dJuadIX66W2pepk3A8Mb-CF0CTgDwPT69WOIb-7rLhtDBpIRTE_QgjChUqWEOv33HJ-jVYx7jDEIrCRWC0SeTTukhS-HpPHWNPW36Wvf3iS7YNpYTz4mdZvEbpSDL10TL9BZZZroVr93id4f7nfrx3T7snla325TS6TsU1IIa8Ayw4zhUJUKcmeK3OXApRSWVQSIoDkGWZHcCOVowRhnyhasdFbkdImu5r9d8J9HF3u998fQjpOacCo4EwKLsUXnlg0-xuAq3YX6YMKgAeuJj_7jo6cw86E_GQxZYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536546606</pqid></control><display><type>article</type><title>Many-body localization: Transitions in spin models</title><source>American Physical Society Journals</source><creator>Schliemann, John ; Costa, João Vitor I. ; Wenk, Paul ; Egues, J. Carlos</creator><creatorcontrib>Schliemann, John ; Costa, João Vitor I. ; Wenk, Paul ; Egues, J. Carlos</creatorcontrib><description>We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random matrix techniques. Particular attention is paid to the sample-to-sample variance (Δsr)2 of the averaged consecutive-gap ratio ⟨r⟩ for different disorder realizations. For both types of systems and spin lengths we find a maximum in Δsr as a function of disorder strength, accompanied by an inflection point of ⟨r⟩, signaling the transition from ergodicity to many-body localization. The critical disorder strength is found to be somewhat smaller than the values reported in the recent literature. Further information about the transitions can be gained from the probability distribution of expectation values within a given disorder realization.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.174203</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Ergodic processes ; Localization ; Many body interactions ; Sample variance</subject><ispartof>Physical review. B, 2021-05, Vol.103 (17), Article 174203</ispartof><rights>Copyright American Physical Society May 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-2b6ca1c4a4aa51fd918eab8e815776c4f212638017f28a69e3b44549cb4dec683</citedby><cites>FETCH-LOGICAL-c277t-2b6ca1c4a4aa51fd918eab8e815776c4f212638017f28a69e3b44549cb4dec683</cites><orcidid>0000-0003-0856-3599 ; 0000-0002-7643-5057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Schliemann, John</creatorcontrib><creatorcontrib>Costa, João Vitor I.</creatorcontrib><creatorcontrib>Wenk, Paul</creatorcontrib><creatorcontrib>Egues, J. Carlos</creatorcontrib><title>Many-body localization: Transitions in spin models</title><title>Physical review. B</title><description>We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random matrix techniques. Particular attention is paid to the sample-to-sample variance (Δsr)2 of the averaged consecutive-gap ratio ⟨r⟩ for different disorder realizations. For both types of systems and spin lengths we find a maximum in Δsr as a function of disorder strength, accompanied by an inflection point of ⟨r⟩, signaling the transition from ergodicity to many-body localization. The critical disorder strength is found to be somewhat smaller than the values reported in the recent literature. Further information about the transitions can be gained from the probability distribution of expectation values within a given disorder realization.</description><subject>Ergodic processes</subject><subject>Localization</subject><subject>Many body interactions</subject><subject>Sample variance</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAUxIMouKz7CbwUPLfm5W_jTRddhRVF1nNI0xS7dJuadIX66W2pepk3A8Mb-CF0CTgDwPT69WOIb-7rLhtDBpIRTE_QgjChUqWEOv33HJ-jVYx7jDEIrCRWC0SeTTukhS-HpPHWNPW36Wvf3iS7YNpYTz4mdZvEbpSDL10TL9BZZZroVr93id4f7nfrx3T7snla325TS6TsU1IIa8Ayw4zhUJUKcmeK3OXApRSWVQSIoDkGWZHcCOVowRhnyhasdFbkdImu5r9d8J9HF3u998fQjpOacCo4EwKLsUXnlg0-xuAq3YX6YMKgAeuJj_7jo6cw86E_GQxZYQ</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Schliemann, John</creator><creator>Costa, João Vitor I.</creator><creator>Wenk, Paul</creator><creator>Egues, J. Carlos</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0856-3599</orcidid><orcidid>https://orcid.org/0000-0002-7643-5057</orcidid></search><sort><creationdate>20210513</creationdate><title>Many-body localization: Transitions in spin models</title><author>Schliemann, John ; Costa, João Vitor I. ; Wenk, Paul ; Egues, J. Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-2b6ca1c4a4aa51fd918eab8e815776c4f212638017f28a69e3b44549cb4dec683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ergodic processes</topic><topic>Localization</topic><topic>Many body interactions</topic><topic>Sample variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schliemann, John</creatorcontrib><creatorcontrib>Costa, João Vitor I.</creatorcontrib><creatorcontrib>Wenk, Paul</creatorcontrib><creatorcontrib>Egues, J. Carlos</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schliemann, John</au><au>Costa, João Vitor I.</au><au>Wenk, Paul</au><au>Egues, J. Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Many-body localization: Transitions in spin models</atitle><jtitle>Physical review. B</jtitle><date>2021-05-13</date><risdate>2021</risdate><volume>103</volume><issue>17</issue><artnum>174203</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random matrix techniques. Particular attention is paid to the sample-to-sample variance (Δsr)2 of the averaged consecutive-gap ratio ⟨r⟩ for different disorder realizations. For both types of systems and spin lengths we find a maximum in Δsr as a function of disorder strength, accompanied by an inflection point of ⟨r⟩, signaling the transition from ergodicity to many-body localization. The critical disorder strength is found to be somewhat smaller than the values reported in the recent literature. Further information about the transitions can be gained from the probability distribution of expectation values within a given disorder realization.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.174203</doi><orcidid>https://orcid.org/0000-0003-0856-3599</orcidid><orcidid>https://orcid.org/0000-0002-7643-5057</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-05, Vol.103 (17), Article 174203
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2536546606
source American Physical Society Journals
subjects Ergodic processes
Localization
Many body interactions
Sample variance
title Many-body localization: Transitions in spin models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Many-body%20localization:%20Transitions%20in%20spin%20models&rft.jtitle=Physical%20review.%20B&rft.au=Schliemann,%20John&rft.date=2021-05-13&rft.volume=103&rft.issue=17&rft.artnum=174203&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.174203&rft_dat=%3Cproquest_cross%3E2536546606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536546606&rft_id=info:pmid/&rfr_iscdi=true