Many-body localization: Transitions in spin models
We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random m...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2021-05, Vol.103 (17), Article 174203 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Physical review. B |
container_volume | 103 |
creator | Schliemann, John Costa, João Vitor I. Wenk, Paul Egues, J. Carlos |
description | We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random matrix techniques. Particular attention is paid to the sample-to-sample variance (Δsr)2 of the averaged consecutive-gap ratio ⟨r⟩ for different disorder realizations. For both types of systems and spin lengths we find a maximum in Δsr as a function of disorder strength, accompanied by an inflection point of ⟨r⟩, signaling the transition from ergodicity to many-body localization. The critical disorder strength is found to be somewhat smaller than the values reported in the recent literature. Further information about the transitions can be gained from the probability distribution of expectation values within a given disorder realization. |
doi_str_mv | 10.1103/PhysRevB.103.174203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536546606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536546606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-2b6ca1c4a4aa51fd918eab8e815776c4f212638017f28a69e3b44549cb4dec683</originalsourceid><addsrcrecordid>eNo9kE9LxDAUxIMouKz7CbwUPLfm5W_jTRddhRVF1nNI0xS7dJuadIX66W2pepk3A8Mb-CF0CTgDwPT69WOIb-7rLhtDBpIRTE_QgjChUqWEOv33HJ-jVYx7jDEIrCRWC0SeTTukhS-HpPHWNPW36Wvf3iS7YNpYTz4mdZvEbpSDL10TL9BZZZroVr93id4f7nfrx3T7snla325TS6TsU1IIa8Ayw4zhUJUKcmeK3OXApRSWVQSIoDkGWZHcCOVowRhnyhasdFbkdImu5r9d8J9HF3u998fQjpOacCo4EwKLsUXnlg0-xuAq3YX6YMKgAeuJj_7jo6cw86E_GQxZYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536546606</pqid></control><display><type>article</type><title>Many-body localization: Transitions in spin models</title><source>American Physical Society Journals</source><creator>Schliemann, John ; Costa, João Vitor I. ; Wenk, Paul ; Egues, J. Carlos</creator><creatorcontrib>Schliemann, John ; Costa, João Vitor I. ; Wenk, Paul ; Egues, J. Carlos</creatorcontrib><description>We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random matrix techniques. Particular attention is paid to the sample-to-sample variance (Δsr)2 of the averaged consecutive-gap ratio ⟨r⟩ for different disorder realizations. For both types of systems and spin lengths we find a maximum in Δsr as a function of disorder strength, accompanied by an inflection point of ⟨r⟩, signaling the transition from ergodicity to many-body localization. The critical disorder strength is found to be somewhat smaller than the values reported in the recent literature. Further information about the transitions can be gained from the probability distribution of expectation values within a given disorder realization.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.174203</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Ergodic processes ; Localization ; Many body interactions ; Sample variance</subject><ispartof>Physical review. B, 2021-05, Vol.103 (17), Article 174203</ispartof><rights>Copyright American Physical Society May 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-2b6ca1c4a4aa51fd918eab8e815776c4f212638017f28a69e3b44549cb4dec683</citedby><cites>FETCH-LOGICAL-c277t-2b6ca1c4a4aa51fd918eab8e815776c4f212638017f28a69e3b44549cb4dec683</cites><orcidid>0000-0003-0856-3599 ; 0000-0002-7643-5057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Schliemann, John</creatorcontrib><creatorcontrib>Costa, João Vitor I.</creatorcontrib><creatorcontrib>Wenk, Paul</creatorcontrib><creatorcontrib>Egues, J. Carlos</creatorcontrib><title>Many-body localization: Transitions in spin models</title><title>Physical review. B</title><description>We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random matrix techniques. Particular attention is paid to the sample-to-sample variance (Δsr)2 of the averaged consecutive-gap ratio ⟨r⟩ for different disorder realizations. For both types of systems and spin lengths we find a maximum in Δsr as a function of disorder strength, accompanied by an inflection point of ⟨r⟩, signaling the transition from ergodicity to many-body localization. The critical disorder strength is found to be somewhat smaller than the values reported in the recent literature. Further information about the transitions can be gained from the probability distribution of expectation values within a given disorder realization.</description><subject>Ergodic processes</subject><subject>Localization</subject><subject>Many body interactions</subject><subject>Sample variance</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAUxIMouKz7CbwUPLfm5W_jTRddhRVF1nNI0xS7dJuadIX66W2pepk3A8Mb-CF0CTgDwPT69WOIb-7rLhtDBpIRTE_QgjChUqWEOv33HJ-jVYx7jDEIrCRWC0SeTTukhS-HpPHWNPW36Wvf3iS7YNpYTz4mdZvEbpSDL10TL9BZZZroVr93id4f7nfrx3T7snla325TS6TsU1IIa8Ayw4zhUJUKcmeK3OXApRSWVQSIoDkGWZHcCOVowRhnyhasdFbkdImu5r9d8J9HF3u998fQjpOacCo4EwKLsUXnlg0-xuAq3YX6YMKgAeuJj_7jo6cw86E_GQxZYQ</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Schliemann, John</creator><creator>Costa, João Vitor I.</creator><creator>Wenk, Paul</creator><creator>Egues, J. Carlos</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0856-3599</orcidid><orcidid>https://orcid.org/0000-0002-7643-5057</orcidid></search><sort><creationdate>20210513</creationdate><title>Many-body localization: Transitions in spin models</title><author>Schliemann, John ; Costa, João Vitor I. ; Wenk, Paul ; Egues, J. Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-2b6ca1c4a4aa51fd918eab8e815776c4f212638017f28a69e3b44549cb4dec683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ergodic processes</topic><topic>Localization</topic><topic>Many body interactions</topic><topic>Sample variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schliemann, John</creatorcontrib><creatorcontrib>Costa, João Vitor I.</creatorcontrib><creatorcontrib>Wenk, Paul</creatorcontrib><creatorcontrib>Egues, J. Carlos</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schliemann, John</au><au>Costa, João Vitor I.</au><au>Wenk, Paul</au><au>Egues, J. Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Many-body localization: Transitions in spin models</atitle><jtitle>Physical review. B</jtitle><date>2021-05-13</date><risdate>2021</risdate><volume>103</volume><issue>17</issue><artnum>174203</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin lengths 1/2 and 1 are investigated via exact numerical diagonalization and random matrix techniques. Particular attention is paid to the sample-to-sample variance (Δsr)2 of the averaged consecutive-gap ratio ⟨r⟩ for different disorder realizations. For both types of systems and spin lengths we find a maximum in Δsr as a function of disorder strength, accompanied by an inflection point of ⟨r⟩, signaling the transition from ergodicity to many-body localization. The critical disorder strength is found to be somewhat smaller than the values reported in the recent literature. Further information about the transitions can be gained from the probability distribution of expectation values within a given disorder realization.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.174203</doi><orcidid>https://orcid.org/0000-0003-0856-3599</orcidid><orcidid>https://orcid.org/0000-0002-7643-5057</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-05, Vol.103 (17), Article 174203 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2536546606 |
source | American Physical Society Journals |
subjects | Ergodic processes Localization Many body interactions Sample variance |
title | Many-body localization: Transitions in spin models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Many-body%20localization:%20Transitions%20in%20spin%20models&rft.jtitle=Physical%20review.%20B&rft.au=Schliemann,%20John&rft.date=2021-05-13&rft.volume=103&rft.issue=17&rft.artnum=174203&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.174203&rft_dat=%3Cproquest_cross%3E2536546606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536546606&rft_id=info:pmid/&rfr_iscdi=true |