Fréedericksz transition on air

10.1119/10.0003350.1 The operational principle of twisted nematic displays involves the dielectric anisotropy of nematics. This crucial property was discovered about a hundred years ago by Jeżewski and Kast who used a so-called resonance method in which the frequency of an LC tank circuit was set by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physics 2021-06, Vol.89 (6), p.603-611
Hauptverfasser: Plo, Juliette, Sadi, Dihya, Thellier, Elio, Pieranski, Pawel, Zeghal, Mehdi, Judeinstein, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 611
container_issue 6
container_start_page 603
container_title American journal of physics
container_volume 89
creator Plo, Juliette
Sadi, Dihya
Thellier, Elio
Pieranski, Pawel
Zeghal, Mehdi
Judeinstein, Patrick
description 10.1119/10.0003350.1 The operational principle of twisted nematic displays involves the dielectric anisotropy of nematics. This crucial property was discovered about a hundred years ago by Jeżewski and Kast who used a so-called resonance method in which the frequency of an LC tank circuit was set by the capacitance of a capacitor filled with a nematic liquid crystal. Jeżewski and Kast observed that the resonance frequency changed upon application of a magnetic field to the capacitor. They interpreted the corresponding change in the dielectric permittivity as being due to reorientation of molecules by the magnetic field. Here, we describe a modern, simple, and low-cost version of this experiment. Instead of the LC oscillator working with vacuum lamps, we use an op-amp RC oscillator in which a twisted nematic display plays the role of the capacitor. For the purpose of classroom demonstrations, the oscillator frequency fRC is detected by a software-defined radio operating in the double-side band mode (DSB). Upon an appropriate tuning of the reception frequency fo, even small changes of Δ f = f R C − f o become audible. This setup is very convenient for demonstration and measurements of all characteristics of the Fréedericksz transition driven by magnetic or electric fields.
doi_str_mv 10.1119/10.0003350
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2536539802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536539802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-3bb139796a7889d7ddc6108bfd05979d2575b107a3156fc959eea274f7768c6e3</originalsourceid><addsrcrecordid>eNqdkM1KAzEUhYMoOFY3voAFVyqjN8kkmSxLsVYYcKPrkEkymFo7NZkW7Bv5HL6YGaaIa-HC4R4-7s9B6BzDLcZY3iUFAEoZHKAMy4LmRII8RFlySS4ZsGN0EuMitRKXkKGLWfj-ctYFb97ibtwFvYq-8-1qnEr7cIqOGr2M7myvI_Qyu3-ezvPq6eFxOqlyU3DR5bSuMZVCci3KUlphreEYyrqxwJJtCROsxiA0xYw3RjLpnCaiaITgpeGOjtDVMPdVL9U6-HcdPlWrvZpPKtV7QAkt0q4tTuzlwK5D-7FxsVOLdhNW6TxFGOWMyhJIoq4HyoQ2xuCa37EYVB9Wr_uwEnwzwNH4Tvf__5PetuEPqda2oT-hLHUn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536539802</pqid></control><display><type>article</type><title>Fréedericksz transition on air</title><source>AIP Journals Complete</source><creator>Plo, Juliette ; Sadi, Dihya ; Thellier, Elio ; Pieranski, Pawel ; Zeghal, Mehdi ; Judeinstein, Patrick</creator><creatorcontrib>Plo, Juliette ; Sadi, Dihya ; Thellier, Elio ; Pieranski, Pawel ; Zeghal, Mehdi ; Judeinstein, Patrick</creatorcontrib><description>10.1119/10.0003350.1 The operational principle of twisted nematic displays involves the dielectric anisotropy of nematics. This crucial property was discovered about a hundred years ago by Jeżewski and Kast who used a so-called resonance method in which the frequency of an LC tank circuit was set by the capacitance of a capacitor filled with a nematic liquid crystal. Jeżewski and Kast observed that the resonance frequency changed upon application of a magnetic field to the capacitor. They interpreted the corresponding change in the dielectric permittivity as being due to reorientation of molecules by the magnetic field. Here, we describe a modern, simple, and low-cost version of this experiment. Instead of the LC oscillator working with vacuum lamps, we use an op-amp RC oscillator in which a twisted nematic display plays the role of the capacitor. For the purpose of classroom demonstrations, the oscillator frequency fRC is detected by a software-defined radio operating in the double-side band mode (DSB). Upon an appropriate tuning of the reception frequency fo, even small changes of Δ f = f R C − f o become audible. This setup is very convenient for demonstration and measurements of all characteristics of the Fréedericksz transition driven by magnetic or electric fields.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/10.0003350</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Anisotropy ; Chemical Sciences ; Condensed Matter ; Cristallography ; Dielectrics ; Electric fields ; Magnetic fields ; Optics ; Physics ; Physics Education ; Resonance ; Soft Condensed Matter ; Statistical Mechanics</subject><ispartof>American journal of physics, 2021-06, Vol.89 (6), p.603-611</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Jun 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-3bb139796a7889d7ddc6108bfd05979d2575b107a3156fc959eea274f7768c6e3</citedby><cites>FETCH-LOGICAL-c467t-3bb139796a7889d7ddc6108bfd05979d2575b107a3156fc959eea274f7768c6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ajp/article-lookup/doi/10.1119/10.0003350$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03234467$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Plo, Juliette</creatorcontrib><creatorcontrib>Sadi, Dihya</creatorcontrib><creatorcontrib>Thellier, Elio</creatorcontrib><creatorcontrib>Pieranski, Pawel</creatorcontrib><creatorcontrib>Zeghal, Mehdi</creatorcontrib><creatorcontrib>Judeinstein, Patrick</creatorcontrib><title>Fréedericksz transition on air</title><title>American journal of physics</title><description>10.1119/10.0003350.1 The operational principle of twisted nematic displays involves the dielectric anisotropy of nematics. This crucial property was discovered about a hundred years ago by Jeżewski and Kast who used a so-called resonance method in which the frequency of an LC tank circuit was set by the capacitance of a capacitor filled with a nematic liquid crystal. Jeżewski and Kast observed that the resonance frequency changed upon application of a magnetic field to the capacitor. They interpreted the corresponding change in the dielectric permittivity as being due to reorientation of molecules by the magnetic field. Here, we describe a modern, simple, and low-cost version of this experiment. Instead of the LC oscillator working with vacuum lamps, we use an op-amp RC oscillator in which a twisted nematic display plays the role of the capacitor. For the purpose of classroom demonstrations, the oscillator frequency fRC is detected by a software-defined radio operating in the double-side band mode (DSB). Upon an appropriate tuning of the reception frequency fo, even small changes of Δ f = f R C − f o become audible. This setup is very convenient for demonstration and measurements of all characteristics of the Fréedericksz transition driven by magnetic or electric fields.</description><subject>Anisotropy</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Cristallography</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Magnetic fields</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics Education</subject><subject>Resonance</subject><subject>Soft Condensed Matter</subject><subject>Statistical Mechanics</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KAzEUhYMoOFY3voAFVyqjN8kkmSxLsVYYcKPrkEkymFo7NZkW7Bv5HL6YGaaIa-HC4R4-7s9B6BzDLcZY3iUFAEoZHKAMy4LmRII8RFlySS4ZsGN0EuMitRKXkKGLWfj-ctYFb97ibtwFvYq-8-1qnEr7cIqOGr2M7myvI_Qyu3-ezvPq6eFxOqlyU3DR5bSuMZVCci3KUlphreEYyrqxwJJtCROsxiA0xYw3RjLpnCaiaITgpeGOjtDVMPdVL9U6-HcdPlWrvZpPKtV7QAkt0q4tTuzlwK5D-7FxsVOLdhNW6TxFGOWMyhJIoq4HyoQ2xuCa37EYVB9Wr_uwEnwzwNH4Tvf__5PetuEPqda2oT-hLHUn</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Plo, Juliette</creator><creator>Sadi, Dihya</creator><creator>Thellier, Elio</creator><creator>Pieranski, Pawel</creator><creator>Zeghal, Mehdi</creator><creator>Judeinstein, Patrick</creator><general>American Institute of Physics</general><general>American Association of Physics Teachers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>202106</creationdate><title>Fréedericksz transition on air</title><author>Plo, Juliette ; Sadi, Dihya ; Thellier, Elio ; Pieranski, Pawel ; Zeghal, Mehdi ; Judeinstein, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-3bb139796a7889d7ddc6108bfd05979d2575b107a3156fc959eea274f7768c6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Cristallography</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Magnetic fields</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics Education</topic><topic>Resonance</topic><topic>Soft Condensed Matter</topic><topic>Statistical Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plo, Juliette</creatorcontrib><creatorcontrib>Sadi, Dihya</creatorcontrib><creatorcontrib>Thellier, Elio</creatorcontrib><creatorcontrib>Pieranski, Pawel</creatorcontrib><creatorcontrib>Zeghal, Mehdi</creatorcontrib><creatorcontrib>Judeinstein, Patrick</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plo, Juliette</au><au>Sadi, Dihya</au><au>Thellier, Elio</au><au>Pieranski, Pawel</au><au>Zeghal, Mehdi</au><au>Judeinstein, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fréedericksz transition on air</atitle><jtitle>American journal of physics</jtitle><date>2021-06</date><risdate>2021</risdate><volume>89</volume><issue>6</issue><spage>603</spage><epage>611</epage><pages>603-611</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>10.1119/10.0003350.1 The operational principle of twisted nematic displays involves the dielectric anisotropy of nematics. This crucial property was discovered about a hundred years ago by Jeżewski and Kast who used a so-called resonance method in which the frequency of an LC tank circuit was set by the capacitance of a capacitor filled with a nematic liquid crystal. Jeżewski and Kast observed that the resonance frequency changed upon application of a magnetic field to the capacitor. They interpreted the corresponding change in the dielectric permittivity as being due to reorientation of molecules by the magnetic field. Here, we describe a modern, simple, and low-cost version of this experiment. Instead of the LC oscillator working with vacuum lamps, we use an op-amp RC oscillator in which a twisted nematic display plays the role of the capacitor. For the purpose of classroom demonstrations, the oscillator frequency fRC is detected by a software-defined radio operating in the double-side band mode (DSB). Upon an appropriate tuning of the reception frequency fo, even small changes of Δ f = f R C − f o become audible. This setup is very convenient for demonstration and measurements of all characteristics of the Fréedericksz transition driven by magnetic or electric fields.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/10.0003350</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2021-06, Vol.89 (6), p.603-611
issn 0002-9505
1943-2909
language eng
recordid cdi_proquest_journals_2536539802
source AIP Journals Complete
subjects Anisotropy
Chemical Sciences
Condensed Matter
Cristallography
Dielectrics
Electric fields
Magnetic fields
Optics
Physics
Physics Education
Resonance
Soft Condensed Matter
Statistical Mechanics
title Fréedericksz transition on air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fr%C3%A9edericksz%20transition%20on%20air&rft.jtitle=American%20journal%20of%20physics&rft.au=Plo,%20Juliette&rft.date=2021-06&rft.volume=89&rft.issue=6&rft.spage=603&rft.epage=611&rft.pages=603-611&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/10.0003350&rft_dat=%3Cproquest_hal_p%3E2536539802%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536539802&rft_id=info:pmid/&rfr_iscdi=true