Influences of Bi0.75Y0.25O1.5 addition on the microstructure and ionic conductivity of Ce0.8Y0.2O1.9 ceramics

A second phase of Y2O3‐stabilized Bi2O3 (Bi0.75Y0.25O1.5,YSB) is introduced into Y2O3‐doped CeO2 (Ce0.8Y0.2O1.9,YDC) as a sintering additive and the composite ceramics of YDC‐xYSB (x = 0, 5, 10, 20, 30, 40 wt%) are prepared through sintering at 1100°C for 6 h in air atmosphere. The YDC‐xYSB ceramics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied ceramic technology 2021-07, Vol.18 (4), p.1153-1163
Hauptverfasser: Liang, Wenke, Meng, Bin, Xiao, Qingfei, Ping, Xinyu, Zheng, Qian, Li, Chen, Xia, Zhidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1163
container_issue 4
container_start_page 1153
container_title International journal of applied ceramic technology
container_volume 18
creator Liang, Wenke
Meng, Bin
Xiao, Qingfei
Ping, Xinyu
Zheng, Qian
Li, Chen
Xia, Zhidong
description A second phase of Y2O3‐stabilized Bi2O3 (Bi0.75Y0.25O1.5,YSB) is introduced into Y2O3‐doped CeO2 (Ce0.8Y0.2O1.9,YDC) as a sintering additive and the composite ceramics of YDC‐xYSB (x = 0, 5, 10, 20, 30, 40 wt%) are prepared through sintering at 1100°C for 6 h in air atmosphere. The YDC‐xYSB ceramics are composed of both YDC and YSB with cubic fluorite structure, and no other impurity phases are detected in XRD patterns. The relative density of YDC‐xYSB rises firstly for x ≤5 wt%, and then it declines with YSB addition from 5 to 40 wt%. The average grain size of YDC decreases from 270 nm to 85.7 nm with YSB addition from 0 to 40 wt%. The YSB phase segregates at the grain boundaries of YDC based on the TEM analysis result. The ionic conductivity of YDC‐xYSB (x ≥5 wt%) is lower than that of YDC in the test temperature of 200°C–500°C, while it gradually exceeds that of YDC in 500°C–750°C. At 750°C, the conductivity of YDC‐30%YSB (6.22 × 10−2 S/cm) is 1.35 times higher than that of YDC (4.6 × 10−2 S/cm). The YSB addition can improve the ionic conductivity of YDC in 500°C–750°C and decrease its sintering temperature.
doi_str_mv 10.1111/ijac.13746
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2536539488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536539488</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2256-76873416b59fe50a89d1936fd7e54fcb0683692f373c4a84d2ddd92ebb6517013</originalsourceid><addsrcrecordid>eNotkFtLwzAUx4MoOKcvfoKAz625p3mcxctksBcFfQppLpixtTNtlX17083DgfPnXH4H_gDcYlTiHPdxY2yJqWTiDMywZKyQDJHzrDkTBWfk4xJc9f0GIcooFTOwW7ZhO_rW-h52AT5EVEr-iUrC17jk0DgXh9i1MOfw5eEu2tT1QxrtMCYPTetgnkYLbde63Iw_cThMoNqjspo4GaOg9cnk0_4aXASz7f3Nf52D96fHt_qlWK2fl_ViVewJ4aKQopKUYdFwFTxHplIOKyqCk56zYBskKioUCVRSy0zFHHHOKeKbRnAsEaZzcHfi7lP3Pfp-0JtuTG1-qQmnglPFqipv4dPWb9z6g96nuDPpoDHSk5d68lIfvdTL10V9VPQPklVmWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536539488</pqid></control><display><type>article</type><title>Influences of Bi0.75Y0.25O1.5 addition on the microstructure and ionic conductivity of Ce0.8Y0.2O1.9 ceramics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liang, Wenke ; Meng, Bin ; Xiao, Qingfei ; Ping, Xinyu ; Zheng, Qian ; Li, Chen ; Xia, Zhidong</creator><creatorcontrib>Liang, Wenke ; Meng, Bin ; Xiao, Qingfei ; Ping, Xinyu ; Zheng, Qian ; Li, Chen ; Xia, Zhidong</creatorcontrib><description>A second phase of Y2O3‐stabilized Bi2O3 (Bi0.75Y0.25O1.5,YSB) is introduced into Y2O3‐doped CeO2 (Ce0.8Y0.2O1.9,YDC) as a sintering additive and the composite ceramics of YDC‐xYSB (x = 0, 5, 10, 20, 30, 40 wt%) are prepared through sintering at 1100°C for 6 h in air atmosphere. The YDC‐xYSB ceramics are composed of both YDC and YSB with cubic fluorite structure, and no other impurity phases are detected in XRD patterns. The relative density of YDC‐xYSB rises firstly for x ≤5 wt%, and then it declines with YSB addition from 5 to 40 wt%. The average grain size of YDC decreases from 270 nm to 85.7 nm with YSB addition from 0 to 40 wt%. The YSB phase segregates at the grain boundaries of YDC based on the TEM analysis result. The ionic conductivity of YDC‐xYSB (x ≥5 wt%) is lower than that of YDC in the test temperature of 200°C–500°C, while it gradually exceeds that of YDC in 500°C–750°C. At 750°C, the conductivity of YDC‐30%YSB (6.22 × 10−2 S/cm) is 1.35 times higher than that of YDC (4.6 × 10−2 S/cm). The YSB addition can improve the ionic conductivity of YDC in 500°C–750°C and decrease its sintering temperature.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.13746</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>bismuth oxide ; Bismuth oxides ; Bismuth trioxide ; Ceramics ; Cerium oxides ; composite ceramics ; Fluorite ; Grain boundaries ; Grain size ; Ion currents ; ionic conductivity ; Sintering ; sintering aid ; Y2O3‐doped CeO2 ; Yttrium oxide</subject><ispartof>International journal of applied ceramic technology, 2021-07, Vol.18 (4), p.1153-1163</ispartof><rights>2021 The American Ceramic Society</rights><rights>Copyright © 2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6905-1701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.13746$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.13746$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liang, Wenke</creatorcontrib><creatorcontrib>Meng, Bin</creatorcontrib><creatorcontrib>Xiao, Qingfei</creatorcontrib><creatorcontrib>Ping, Xinyu</creatorcontrib><creatorcontrib>Zheng, Qian</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Xia, Zhidong</creatorcontrib><title>Influences of Bi0.75Y0.25O1.5 addition on the microstructure and ionic conductivity of Ce0.8Y0.2O1.9 ceramics</title><title>International journal of applied ceramic technology</title><description>A second phase of Y2O3‐stabilized Bi2O3 (Bi0.75Y0.25O1.5,YSB) is introduced into Y2O3‐doped CeO2 (Ce0.8Y0.2O1.9,YDC) as a sintering additive and the composite ceramics of YDC‐xYSB (x = 0, 5, 10, 20, 30, 40 wt%) are prepared through sintering at 1100°C for 6 h in air atmosphere. The YDC‐xYSB ceramics are composed of both YDC and YSB with cubic fluorite structure, and no other impurity phases are detected in XRD patterns. The relative density of YDC‐xYSB rises firstly for x ≤5 wt%, and then it declines with YSB addition from 5 to 40 wt%. The average grain size of YDC decreases from 270 nm to 85.7 nm with YSB addition from 0 to 40 wt%. The YSB phase segregates at the grain boundaries of YDC based on the TEM analysis result. The ionic conductivity of YDC‐xYSB (x ≥5 wt%) is lower than that of YDC in the test temperature of 200°C–500°C, while it gradually exceeds that of YDC in 500°C–750°C. At 750°C, the conductivity of YDC‐30%YSB (6.22 × 10−2 S/cm) is 1.35 times higher than that of YDC (4.6 × 10−2 S/cm). The YSB addition can improve the ionic conductivity of YDC in 500°C–750°C and decrease its sintering temperature.</description><subject>bismuth oxide</subject><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>Ceramics</subject><subject>Cerium oxides</subject><subject>composite ceramics</subject><subject>Fluorite</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Ion currents</subject><subject>ionic conductivity</subject><subject>Sintering</subject><subject>sintering aid</subject><subject>Y2O3‐doped CeO2</subject><subject>Yttrium oxide</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkFtLwzAUx4MoOKcvfoKAz625p3mcxctksBcFfQppLpixtTNtlX17083DgfPnXH4H_gDcYlTiHPdxY2yJqWTiDMywZKyQDJHzrDkTBWfk4xJc9f0GIcooFTOwW7ZhO_rW-h52AT5EVEr-iUrC17jk0DgXh9i1MOfw5eEu2tT1QxrtMCYPTetgnkYLbde63Iw_cThMoNqjspo4GaOg9cnk0_4aXASz7f3Nf52D96fHt_qlWK2fl_ViVewJ4aKQopKUYdFwFTxHplIOKyqCk56zYBskKioUCVRSy0zFHHHOKeKbRnAsEaZzcHfi7lP3Pfp-0JtuTG1-qQmnglPFqipv4dPWb9z6g96nuDPpoDHSk5d68lIfvdTL10V9VPQPklVmWg</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Liang, Wenke</creator><creator>Meng, Bin</creator><creator>Xiao, Qingfei</creator><creator>Ping, Xinyu</creator><creator>Zheng, Qian</creator><creator>Li, Chen</creator><creator>Xia, Zhidong</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6905-1701</orcidid></search><sort><creationdate>202107</creationdate><title>Influences of Bi0.75Y0.25O1.5 addition on the microstructure and ionic conductivity of Ce0.8Y0.2O1.9 ceramics</title><author>Liang, Wenke ; Meng, Bin ; Xiao, Qingfei ; Ping, Xinyu ; Zheng, Qian ; Li, Chen ; Xia, Zhidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2256-76873416b59fe50a89d1936fd7e54fcb0683692f373c4a84d2ddd92ebb6517013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bismuth oxide</topic><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>Ceramics</topic><topic>Cerium oxides</topic><topic>composite ceramics</topic><topic>Fluorite</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Ion currents</topic><topic>ionic conductivity</topic><topic>Sintering</topic><topic>sintering aid</topic><topic>Y2O3‐doped CeO2</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Wenke</creatorcontrib><creatorcontrib>Meng, Bin</creatorcontrib><creatorcontrib>Xiao, Qingfei</creatorcontrib><creatorcontrib>Ping, Xinyu</creatorcontrib><creatorcontrib>Zheng, Qian</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Xia, Zhidong</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Wenke</au><au>Meng, Bin</au><au>Xiao, Qingfei</au><au>Ping, Xinyu</au><au>Zheng, Qian</au><au>Li, Chen</au><au>Xia, Zhidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of Bi0.75Y0.25O1.5 addition on the microstructure and ionic conductivity of Ce0.8Y0.2O1.9 ceramics</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2021-07</date><risdate>2021</risdate><volume>18</volume><issue>4</issue><spage>1153</spage><epage>1163</epage><pages>1153-1163</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>A second phase of Y2O3‐stabilized Bi2O3 (Bi0.75Y0.25O1.5,YSB) is introduced into Y2O3‐doped CeO2 (Ce0.8Y0.2O1.9,YDC) as a sintering additive and the composite ceramics of YDC‐xYSB (x = 0, 5, 10, 20, 30, 40 wt%) are prepared through sintering at 1100°C for 6 h in air atmosphere. The YDC‐xYSB ceramics are composed of both YDC and YSB with cubic fluorite structure, and no other impurity phases are detected in XRD patterns. The relative density of YDC‐xYSB rises firstly for x ≤5 wt%, and then it declines with YSB addition from 5 to 40 wt%. The average grain size of YDC decreases from 270 nm to 85.7 nm with YSB addition from 0 to 40 wt%. The YSB phase segregates at the grain boundaries of YDC based on the TEM analysis result. The ionic conductivity of YDC‐xYSB (x ≥5 wt%) is lower than that of YDC in the test temperature of 200°C–500°C, while it gradually exceeds that of YDC in 500°C–750°C. At 750°C, the conductivity of YDC‐30%YSB (6.22 × 10−2 S/cm) is 1.35 times higher than that of YDC (4.6 × 10−2 S/cm). The YSB addition can improve the ionic conductivity of YDC in 500°C–750°C and decrease its sintering temperature.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijac.13746</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6905-1701</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1546-542X
ispartof International journal of applied ceramic technology, 2021-07, Vol.18 (4), p.1153-1163
issn 1546-542X
1744-7402
language eng
recordid cdi_proquest_journals_2536539488
source Wiley Online Library Journals Frontfile Complete
subjects bismuth oxide
Bismuth oxides
Bismuth trioxide
Ceramics
Cerium oxides
composite ceramics
Fluorite
Grain boundaries
Grain size
Ion currents
ionic conductivity
Sintering
sintering aid
Y2O3‐doped CeO2
Yttrium oxide
title Influences of Bi0.75Y0.25O1.5 addition on the microstructure and ionic conductivity of Ce0.8Y0.2O1.9 ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20Bi0.75Y0.25O1.5%20addition%20on%20the%20microstructure%20and%20ionic%20conductivity%20of%20Ce0.8Y0.2O1.9%20ceramics&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Liang,%20Wenke&rft.date=2021-07&rft.volume=18&rft.issue=4&rft.spage=1153&rft.epage=1163&rft.pages=1153-1163&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.13746&rft_dat=%3Cproquest_wiley%3E2536539488%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536539488&rft_id=info:pmid/&rfr_iscdi=true