General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details

•Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce grow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2021-08, Vol.532, p.167945, Article 167945
Hauptverfasser: Ferreira Velo, Murilo, Puydinger dos Santos, Marcos Vinicius, Malvezzi Cecchi, Breno, Roberto Pirota, Kleber
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 167945
container_title Journal of magnetism and magnetic materials
container_volume 532
creator Ferreira Velo, Murilo
Puydinger dos Santos, Marcos Vinicius
Malvezzi Cecchi, Breno
Roberto Pirota, Kleber
description •Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce growth of domain walls (DWs) around them during the magnetization reversal of the nanostructure.•The propagation features of the DWs are the main responsible for the AMR signal behaviour. The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy.
doi_str_mv 10.1016/j.jmmm.2021.167945
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536538974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885321002213</els_id><sourcerecordid>2536538974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-dda420f0bac04b540ce51ca5d94a34c3c43cf02087c76c7fd5c00435a24e5f3d3</originalsourceid><addsrcrecordid>eNp9kLGO1DAQhi0EEnsHL0BliTrLOLaTrESDTnAgnUQDtTU7nuw5SuzF9h6io-IdeD2ehCx7NdU0__fPzCfEKwVbBap7M22nZVm2LbRqq7p-Z-wTsVFDrxvTd91TsQENphkGq5-Lq1ImAFBm6Dbi1y1HzjhLPB5zQrqXY8oSYyip5nQMJBc8RK4pcwmlYiSWhDOdZqwhxSJPhf0_JvMD4xziQdZ7ljnNLNMoKe1xrjJiTN9D5j8_fxd54LRwzWHtkZ4rhrm8EM9GnAu_fJzX4uuH919uPjZ3n28_3by7a6g1ujbeo2lhhD0SmL01QGwVofU7g9qQJqNphBaGnvqO-tFbAjDaYmvYjtrra_H60rs---3EpbopnXJcV7rW6s7qYdebNdVeUpRTKZlHd8xhwfzDKXBn325yZ9_u7NtdfK_Q2wvE6_0PgbMrFHj15de_qTqfwv_wv7Ncje4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536538974</pqid></control><display><type>article</type><title>General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ferreira Velo, Murilo ; Puydinger dos Santos, Marcos Vinicius ; Malvezzi Cecchi, Breno ; Roberto Pirota, Kleber</creator><creatorcontrib>Ferreira Velo, Murilo ; Puydinger dos Santos, Marcos Vinicius ; Malvezzi Cecchi, Breno ; Roberto Pirota, Kleber</creatorcontrib><description>•Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce growth of domain walls (DWs) around them during the magnetization reversal of the nanostructure.•The propagation features of the DWs are the main responsible for the AMR signal behaviour. The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2021.167945</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropic magnetoresistance ; Anisotropy ; Domain walls ; Electric contacts ; Electric potential ; Electrodynamics ; Magnetic domains ; Magnetic fields ; Magnetic nanowire ; Magnetism ; Magnetization reversal ; Magnetoresistance ; Magnetoresistivity ; Micromagnetic simulation ; Nanowires ; Numerical prediction ; Room temperature ; Simulation ; Voltage</subject><ispartof>Journal of magnetism and magnetic materials, 2021-08, Vol.532, p.167945, Article 167945</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-dda420f0bac04b540ce51ca5d94a34c3c43cf02087c76c7fd5c00435a24e5f3d3</citedby><cites>FETCH-LOGICAL-c243t-dda420f0bac04b540ce51ca5d94a34c3c43cf02087c76c7fd5c00435a24e5f3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304885321002213$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ferreira Velo, Murilo</creatorcontrib><creatorcontrib>Puydinger dos Santos, Marcos Vinicius</creatorcontrib><creatorcontrib>Malvezzi Cecchi, Breno</creatorcontrib><creatorcontrib>Roberto Pirota, Kleber</creatorcontrib><title>General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details</title><title>Journal of magnetism and magnetic materials</title><description>•Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce growth of domain walls (DWs) around them during the magnetization reversal of the nanostructure.•The propagation features of the DWs are the main responsible for the AMR signal behaviour. The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy.</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Domain walls</subject><subject>Electric contacts</subject><subject>Electric potential</subject><subject>Electrodynamics</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Magnetic nanowire</subject><subject>Magnetism</subject><subject>Magnetization reversal</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Micromagnetic simulation</subject><subject>Nanowires</subject><subject>Numerical prediction</subject><subject>Room temperature</subject><subject>Simulation</subject><subject>Voltage</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLGO1DAQhi0EEnsHL0BliTrLOLaTrESDTnAgnUQDtTU7nuw5SuzF9h6io-IdeD2ehCx7NdU0__fPzCfEKwVbBap7M22nZVm2LbRqq7p-Z-wTsVFDrxvTd91TsQENphkGq5-Lq1ImAFBm6Dbi1y1HzjhLPB5zQrqXY8oSYyip5nQMJBc8RK4pcwmlYiSWhDOdZqwhxSJPhf0_JvMD4xziQdZ7ljnNLNMoKe1xrjJiTN9D5j8_fxd54LRwzWHtkZ4rhrm8EM9GnAu_fJzX4uuH919uPjZ3n28_3by7a6g1ujbeo2lhhD0SmL01QGwVofU7g9qQJqNphBaGnvqO-tFbAjDaYmvYjtrra_H60rs---3EpbopnXJcV7rW6s7qYdebNdVeUpRTKZlHd8xhwfzDKXBn325yZ9_u7NtdfK_Q2wvE6_0PgbMrFHj15de_qTqfwv_wv7Ncje4</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Ferreira Velo, Murilo</creator><creator>Puydinger dos Santos, Marcos Vinicius</creator><creator>Malvezzi Cecchi, Breno</creator><creator>Roberto Pirota, Kleber</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210815</creationdate><title>General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details</title><author>Ferreira Velo, Murilo ; Puydinger dos Santos, Marcos Vinicius ; Malvezzi Cecchi, Breno ; Roberto Pirota, Kleber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-dda420f0bac04b540ce51ca5d94a34c3c43cf02087c76c7fd5c00435a24e5f3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Domain walls</topic><topic>Electric contacts</topic><topic>Electric potential</topic><topic>Electrodynamics</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Magnetic nanowire</topic><topic>Magnetism</topic><topic>Magnetization reversal</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Micromagnetic simulation</topic><topic>Nanowires</topic><topic>Numerical prediction</topic><topic>Room temperature</topic><topic>Simulation</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira Velo, Murilo</creatorcontrib><creatorcontrib>Puydinger dos Santos, Marcos Vinicius</creatorcontrib><creatorcontrib>Malvezzi Cecchi, Breno</creatorcontrib><creatorcontrib>Roberto Pirota, Kleber</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira Velo, Murilo</au><au>Puydinger dos Santos, Marcos Vinicius</au><au>Malvezzi Cecchi, Breno</au><au>Roberto Pirota, Kleber</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>532</volume><spage>167945</spage><pages>167945-</pages><artnum>167945</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce growth of domain walls (DWs) around them during the magnetization reversal of the nanostructure.•The propagation features of the DWs are the main responsible for the AMR signal behaviour. The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2021.167945</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2021-08, Vol.532, p.167945, Article 167945
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2536538974
source Elsevier ScienceDirect Journals Complete
subjects Anisotropic magnetoresistance
Anisotropy
Domain walls
Electric contacts
Electric potential
Electrodynamics
Magnetic domains
Magnetic fields
Magnetic nanowire
Magnetism
Magnetization reversal
Magnetoresistance
Magnetoresistivity
Micromagnetic simulation
Nanowires
Numerical prediction
Room temperature
Simulation
Voltage
title General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20approach%20for%20anisotropic%20magnetoresistance%20calculations%20used%20for%20revealing%20the%20role%20of%20cobalt%20nanowire%E2%80%99s%20geometrical%20details&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Ferreira%20Velo,%20Murilo&rft.date=2021-08-15&rft.volume=532&rft.spage=167945&rft.pages=167945-&rft.artnum=167945&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2021.167945&rft_dat=%3Cproquest_cross%3E2536538974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536538974&rft_id=info:pmid/&rft_els_id=S0304885321002213&rfr_iscdi=true