Direct Methods for Pseudo-relativistic Schrödinger Operators

In this paper, we establish various maximal principles and develop the direct moving planes and sliding methods for equations involving the physically interesting (nonlocal) pseudo-relativistic Schrödinger operators ( - Δ + m 2 ) s with s ∈ ( 0 , 1 ) and mass m > 0 . As a consequence, we also der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-06, Vol.31 (6), p.5555-5618
Hauptverfasser: Dai, Wei, Qin, Guolin, Wu, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5618
container_issue 6
container_start_page 5555
container_title The Journal of Geometric Analysis
container_volume 31
creator Dai, Wei
Qin, Guolin
Wu, Dan
description In this paper, we establish various maximal principles and develop the direct moving planes and sliding methods for equations involving the physically interesting (nonlocal) pseudo-relativistic Schrödinger operators ( - Δ + m 2 ) s with s ∈ ( 0 , 1 ) and mass m > 0 . As a consequence, we also derive multiple applications of these direct methods. For instance, we prove monotonicity, symmetry and uniqueness results for solutions to various equations involving the operators ( - Δ + m 2 ) s in bounded or unbounded domains with certain geometrical structures (e.g., coercive epigraph and epigraph), including pseudo-relativistic Schrödinger equations, 3D boson star equations and the equations with De Giorgi-type nonlinearities. When m = 0 and s = 1 , equations with De Giorgi-type nonlinearities are related to De Giorgi conjecture connected with minimal surfaces and the scalar Ginzburg–Landau functional associated to harmonic map.
doi_str_mv 10.1007/s12220-020-00492-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2536532369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707340220</galeid><sourcerecordid>A707340220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-988d37558bad7cc70d8331e0a834c46f6c14bcff3306369b5504f4fb49f572923</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrA9dTcM7NwUeoVKhVUcBcymaRNaSc1SQVfzBfwxcwwgjsJh1z4v5zDB8A5ghMEobiMCGMMS9gXpDUu0QEYIcbqfMVvh_kMGSx5jfkxOIlxnUOcUDECV9cuGJ2KR5NWvo2F9aF4imbf-jKYjUruw8XkdPGsV-H7q3Xd0oRisTNBJR_iKTiyahPN2e8-Bq-3Ny-z-3K-uHuYTeelJqxKZV1VLRGMVY1qhdYCthUhyEBVEaopt1wj2mhrCYGc8LphDFJLbUNrywSuMRmDi-HfXfDvexOTXPt96HJLiRnhjOCM5dRkSC3VxkjXWZ-C0nm1Zuu074x1-X0qoCAUZl0ZwAOgg48xGCt3wW1V-JQIyt6rHLxK2FfvVaIMkQGKOdzr-JvlH-oHnod6FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536532369</pqid></control><display><type>article</type><title>Direct Methods for Pseudo-relativistic Schrödinger Operators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dai, Wei ; Qin, Guolin ; Wu, Dan</creator><creatorcontrib>Dai, Wei ; Qin, Guolin ; Wu, Dan</creatorcontrib><description>In this paper, we establish various maximal principles and develop the direct moving planes and sliding methods for equations involving the physically interesting (nonlocal) pseudo-relativistic Schrödinger operators ( - Δ + m 2 ) s with s ∈ ( 0 , 1 ) and mass m &gt; 0 . As a consequence, we also derive multiple applications of these direct methods. For instance, we prove monotonicity, symmetry and uniqueness results for solutions to various equations involving the operators ( - Δ + m 2 ) s in bounded or unbounded domains with certain geometrical structures (e.g., coercive epigraph and epigraph), including pseudo-relativistic Schrödinger equations, 3D boson star equations and the equations with De Giorgi-type nonlinearities. When m = 0 and s = 1 , equations with De Giorgi-type nonlinearities are related to De Giorgi conjecture connected with minimal surfaces and the scalar Ginzburg–Landau functional associated to harmonic map.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-020-00492-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Minimal surfaces ; Nonlinearity ; Operators (mathematics) ; Relativistic effects ; Schrodinger equation</subject><ispartof>The Journal of Geometric Analysis, 2021-06, Vol.31 (6), p.5555-5618</ispartof><rights>Mathematica Josephina, Inc. 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Mathematica Josephina, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-988d37558bad7cc70d8331e0a834c46f6c14bcff3306369b5504f4fb49f572923</citedby><cites>FETCH-LOGICAL-c358t-988d37558bad7cc70d8331e0a834c46f6c14bcff3306369b5504f4fb49f572923</cites><orcidid>0000-0002-2395-8751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-020-00492-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-020-00492-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Qin, Guolin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><title>Direct Methods for Pseudo-relativistic Schrödinger Operators</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper, we establish various maximal principles and develop the direct moving planes and sliding methods for equations involving the physically interesting (nonlocal) pseudo-relativistic Schrödinger operators ( - Δ + m 2 ) s with s ∈ ( 0 , 1 ) and mass m &gt; 0 . As a consequence, we also derive multiple applications of these direct methods. For instance, we prove monotonicity, symmetry and uniqueness results for solutions to various equations involving the operators ( - Δ + m 2 ) s in bounded or unbounded domains with certain geometrical structures (e.g., coercive epigraph and epigraph), including pseudo-relativistic Schrödinger equations, 3D boson star equations and the equations with De Giorgi-type nonlinearities. When m = 0 and s = 1 , equations with De Giorgi-type nonlinearities are related to De Giorgi conjecture connected with minimal surfaces and the scalar Ginzburg–Landau functional associated to harmonic map.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimal surfaces</subject><subject>Nonlinearity</subject><subject>Operators (mathematics)</subject><subject>Relativistic effects</subject><subject>Schrodinger equation</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrA9dTcM7NwUeoVKhVUcBcymaRNaSc1SQVfzBfwxcwwgjsJh1z4v5zDB8A5ghMEobiMCGMMS9gXpDUu0QEYIcbqfMVvh_kMGSx5jfkxOIlxnUOcUDECV9cuGJ2KR5NWvo2F9aF4imbf-jKYjUruw8XkdPGsV-H7q3Xd0oRisTNBJR_iKTiyahPN2e8-Bq-3Ny-z-3K-uHuYTeelJqxKZV1VLRGMVY1qhdYCthUhyEBVEaopt1wj2mhrCYGc8LphDFJLbUNrywSuMRmDi-HfXfDvexOTXPt96HJLiRnhjOCM5dRkSC3VxkjXWZ-C0nm1Zuu074x1-X0qoCAUZl0ZwAOgg48xGCt3wW1V-JQIyt6rHLxK2FfvVaIMkQGKOdzr-JvlH-oHnod6FQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Dai, Wei</creator><creator>Qin, Guolin</creator><creator>Wu, Dan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-2395-8751</orcidid></search><sort><creationdate>20210601</creationdate><title>Direct Methods for Pseudo-relativistic Schrödinger Operators</title><author>Dai, Wei ; Qin, Guolin ; Wu, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-988d37558bad7cc70d8331e0a834c46f6c14bcff3306369b5504f4fb49f572923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimal surfaces</topic><topic>Nonlinearity</topic><topic>Operators (mathematics)</topic><topic>Relativistic effects</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Qin, Guolin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Wei</au><au>Qin, Guolin</au><au>Wu, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Methods for Pseudo-relativistic Schrödinger Operators</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>6</issue><spage>5555</spage><epage>5618</epage><pages>5555-5618</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper, we establish various maximal principles and develop the direct moving planes and sliding methods for equations involving the physically interesting (nonlocal) pseudo-relativistic Schrödinger operators ( - Δ + m 2 ) s with s ∈ ( 0 , 1 ) and mass m &gt; 0 . As a consequence, we also derive multiple applications of these direct methods. For instance, we prove monotonicity, symmetry and uniqueness results for solutions to various equations involving the operators ( - Δ + m 2 ) s in bounded or unbounded domains with certain geometrical structures (e.g., coercive epigraph and epigraph), including pseudo-relativistic Schrödinger equations, 3D boson star equations and the equations with De Giorgi-type nonlinearities. When m = 0 and s = 1 , equations with De Giorgi-type nonlinearities are related to De Giorgi conjecture connected with minimal surfaces and the scalar Ginzburg–Landau functional associated to harmonic map.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-020-00492-1</doi><tpages>64</tpages><orcidid>https://orcid.org/0000-0002-2395-8751</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2021-06, Vol.31 (6), p.5555-5618
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2536532369
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematical analysis
Mathematics
Mathematics and Statistics
Minimal surfaces
Nonlinearity
Operators (mathematics)
Relativistic effects
Schrodinger equation
title Direct Methods for Pseudo-relativistic Schrödinger Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Methods%20for%20Pseudo-relativistic%20Schr%C3%B6dinger%20Operators&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Dai,%20Wei&rft.date=2021-06-01&rft.volume=31&rft.issue=6&rft.spage=5555&rft.epage=5618&rft.pages=5555-5618&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-020-00492-1&rft_dat=%3Cgale_proqu%3EA707340220%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536532369&rft_id=info:pmid/&rft_galeid=A707340220&rfr_iscdi=true