Adaptation and response of Kobresia littledalei to cold stress conditions

Kobresia plant ( Kobresia littledalei ) is the dominant vegetation type in the Qinghai-Tibet Plateau region where the temperatures can be extremely low and harsh during winter. However, the potential molecular mechanisms that respond to cold remain to be fully elucidated. In this study, we applied t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta physiologiae plantarum 2021-06, Vol.43 (6), Article 92
Hauptverfasser: Qu, Guangpeng, Baima, Gaweng, Liu, Yunfei, Wang, Li, Wei, Wei, Liao, Yangci, Chen, Shaofeng, Tudeng, Qunpei, Can, Muyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Acta physiologiae plantarum
container_volume 43
creator Qu, Guangpeng
Baima, Gaweng
Liu, Yunfei
Wang, Li
Wei, Wei
Liao, Yangci
Chen, Shaofeng
Tudeng, Qunpei
Can, Muyou
description Kobresia plant ( Kobresia littledalei ) is the dominant vegetation type in the Qinghai-Tibet Plateau region where the temperatures can be extremely low and harsh during winter. However, the potential molecular mechanisms that respond to cold remain to be fully elucidated. In this study, we applied the use of high-throughput sequencing technology in investigating the genes involved in Kobresia plant acclimation and response to cold stress. Kobresia plants were grown in pots for 7 days in a 25 °C greenhouse and thereafter subdivided into 6 batches (Kli-0 to Kli-5) that were exposed to cold-treatment in a – 5 °C cryogenic treatment room at varying timelines (0–48 h); With Kli-0 batch being the control (untreated). We sequenced the treated samples and obtained 90,331,944 clean reads. Clustering analysis assigned a total of 214,531 assembled trinity genes. For functional annotation, all the assembled unigenes were aligned against public databases that include NCBI’s Pfam (Pfam protein families), Uniprot (Swiss-Prot), KEGG (Kyoto Encyclopedia of Genes and Genomes database) and KOG (eukaryotic orthologous groups) classification system was used to assign the possible functions of the obtained unigenes. From these, we linked a great number of candidate genes to the cold stress response. Several significant DEGs and metabolic responses were identified and discussed. Further, we identified significant DEG’s from the transcriptome data. AP2/ERF-ERF gene family could be playing a significant role that enhances the survival of K. littledalei to cold stress conditions. In conclusion, our findings herein further the general understanding of Kobresia plants' adaptation and responses to cold stress through the molecular mechanisms involved in signal regulation and cold resistance.
doi_str_mv 10.1007/s11738-021-03246-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2536532273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536532273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b8bc4294446cca16ba5e442e528e7b26aac5fd46cb1f09cc1f779e715edd7ed93</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FM0iTtcVn8WFzwoueQJql0qU1Nsiz-e7NW8OZpZng_Bh6EroHeAqXqLgEoXhPKgFDOKkkOJ2gBtQQCUlanaEGBKyLqGs7RRUo7SgUXUi7QZuXMlE3uw4jN6HD0aQpj8jh0-Dm05ewNHvqcB-_M4HucA7ZhcDjloqWyj64_ptMlOuvMkPzV71yit4f71_UT2b48btarLbEcmkzaurUVa6qqktYakK0RvqqYF6z2qmXSGCs6V8QWOtpYC51SjVcgvHPKu4Yv0c3cO8Xwufcp613Yx7G81ExwKThjihcXm102hpSi7_QU-w8TvzRQfUSmZ2S6INM_yPShhPgcSsU8vvv4V_1P6hvQDnBi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536532273</pqid></control><display><type>article</type><title>Adaptation and response of Kobresia littledalei to cold stress conditions</title><source>Springer Nature - Complete Springer Journals</source><creator>Qu, Guangpeng ; Baima, Gaweng ; Liu, Yunfei ; Wang, Li ; Wei, Wei ; Liao, Yangci ; Chen, Shaofeng ; Tudeng, Qunpei ; Can, Muyou</creator><creatorcontrib>Qu, Guangpeng ; Baima, Gaweng ; Liu, Yunfei ; Wang, Li ; Wei, Wei ; Liao, Yangci ; Chen, Shaofeng ; Tudeng, Qunpei ; Can, Muyou</creatorcontrib><description>Kobresia plant ( Kobresia littledalei ) is the dominant vegetation type in the Qinghai-Tibet Plateau region where the temperatures can be extremely low and harsh during winter. However, the potential molecular mechanisms that respond to cold remain to be fully elucidated. In this study, we applied the use of high-throughput sequencing technology in investigating the genes involved in Kobresia plant acclimation and response to cold stress. Kobresia plants were grown in pots for 7 days in a 25 °C greenhouse and thereafter subdivided into 6 batches (Kli-0 to Kli-5) that were exposed to cold-treatment in a – 5 °C cryogenic treatment room at varying timelines (0–48 h); With Kli-0 batch being the control (untreated). We sequenced the treated samples and obtained 90,331,944 clean reads. Clustering analysis assigned a total of 214,531 assembled trinity genes. For functional annotation, all the assembled unigenes were aligned against public databases that include NCBI’s Pfam (Pfam protein families), Uniprot (Swiss-Prot), KEGG (Kyoto Encyclopedia of Genes and Genomes database) and KOG (eukaryotic orthologous groups) classification system was used to assign the possible functions of the obtained unigenes. From these, we linked a great number of candidate genes to the cold stress response. Several significant DEGs and metabolic responses were identified and discussed. Further, we identified significant DEG’s from the transcriptome data. AP2/ERF-ERF gene family could be playing a significant role that enhances the survival of K. littledalei to cold stress conditions. In conclusion, our findings herein further the general understanding of Kobresia plants' adaptation and responses to cold stress through the molecular mechanisms involved in signal regulation and cold resistance.</description><identifier>ISSN: 0137-5881</identifier><identifier>EISSN: 1861-1664</identifier><identifier>DOI: 10.1007/s11738-021-03246-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimation ; Acclimatization ; Adaptation ; Agriculture ; Annotations ; Biomedical and Life Sciences ; Cellular stress response ; Cluster analysis ; Clustering ; Cold ; Cold resistance ; Cold treatment ; Cryogenic treatment ; Encyclopedias ; Gene expression ; Genes ; Genomes ; Kobresia ; Life Sciences ; Low temperature resistance ; Metabolic response ; Molecular modelling ; Next-generation sequencing ; Original Article ; Plant Anatomy/Development ; Plant Biochemistry ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Protein families ; Transcriptomes ; Vegetation type</subject><ispartof>Acta physiologiae plantarum, 2021-06, Vol.43 (6), Article 92</ispartof><rights>Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2021</rights><rights>Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b8bc4294446cca16ba5e442e528e7b26aac5fd46cb1f09cc1f779e715edd7ed93</citedby><cites>FETCH-LOGICAL-c319t-b8bc4294446cca16ba5e442e528e7b26aac5fd46cb1f09cc1f779e715edd7ed93</cites><orcidid>0000-0002-9123-2645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11738-021-03246-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11738-021-03246-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qu, Guangpeng</creatorcontrib><creatorcontrib>Baima, Gaweng</creatorcontrib><creatorcontrib>Liu, Yunfei</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Liao, Yangci</creatorcontrib><creatorcontrib>Chen, Shaofeng</creatorcontrib><creatorcontrib>Tudeng, Qunpei</creatorcontrib><creatorcontrib>Can, Muyou</creatorcontrib><title>Adaptation and response of Kobresia littledalei to cold stress conditions</title><title>Acta physiologiae plantarum</title><addtitle>Acta Physiol Plant</addtitle><description>Kobresia plant ( Kobresia littledalei ) is the dominant vegetation type in the Qinghai-Tibet Plateau region where the temperatures can be extremely low and harsh during winter. However, the potential molecular mechanisms that respond to cold remain to be fully elucidated. In this study, we applied the use of high-throughput sequencing technology in investigating the genes involved in Kobresia plant acclimation and response to cold stress. Kobresia plants were grown in pots for 7 days in a 25 °C greenhouse and thereafter subdivided into 6 batches (Kli-0 to Kli-5) that were exposed to cold-treatment in a – 5 °C cryogenic treatment room at varying timelines (0–48 h); With Kli-0 batch being the control (untreated). We sequenced the treated samples and obtained 90,331,944 clean reads. Clustering analysis assigned a total of 214,531 assembled trinity genes. For functional annotation, all the assembled unigenes were aligned against public databases that include NCBI’s Pfam (Pfam protein families), Uniprot (Swiss-Prot), KEGG (Kyoto Encyclopedia of Genes and Genomes database) and KOG (eukaryotic orthologous groups) classification system was used to assign the possible functions of the obtained unigenes. From these, we linked a great number of candidate genes to the cold stress response. Several significant DEGs and metabolic responses were identified and discussed. Further, we identified significant DEG’s from the transcriptome data. AP2/ERF-ERF gene family could be playing a significant role that enhances the survival of K. littledalei to cold stress conditions. In conclusion, our findings herein further the general understanding of Kobresia plants' adaptation and responses to cold stress through the molecular mechanisms involved in signal regulation and cold resistance.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Agriculture</subject><subject>Annotations</subject><subject>Biomedical and Life Sciences</subject><subject>Cellular stress response</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cold</subject><subject>Cold resistance</subject><subject>Cold treatment</subject><subject>Cryogenic treatment</subject><subject>Encyclopedias</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Kobresia</subject><subject>Life Sciences</subject><subject>Low temperature resistance</subject><subject>Metabolic response</subject><subject>Molecular modelling</subject><subject>Next-generation sequencing</subject><subject>Original Article</subject><subject>Plant Anatomy/Development</subject><subject>Plant Biochemistry</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Protein families</subject><subject>Transcriptomes</subject><subject>Vegetation type</subject><issn>0137-5881</issn><issn>1861-1664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FM0iTtcVn8WFzwoueQJql0qU1Nsiz-e7NW8OZpZng_Bh6EroHeAqXqLgEoXhPKgFDOKkkOJ2gBtQQCUlanaEGBKyLqGs7RRUo7SgUXUi7QZuXMlE3uw4jN6HD0aQpj8jh0-Dm05ewNHvqcB-_M4HucA7ZhcDjloqWyj64_ptMlOuvMkPzV71yit4f71_UT2b48btarLbEcmkzaurUVa6qqktYakK0RvqqYF6z2qmXSGCs6V8QWOtpYC51SjVcgvHPKu4Yv0c3cO8Xwufcp613Yx7G81ExwKThjihcXm102hpSi7_QU-w8TvzRQfUSmZ2S6INM_yPShhPgcSsU8vvv4V_1P6hvQDnBi</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Qu, Guangpeng</creator><creator>Baima, Gaweng</creator><creator>Liu, Yunfei</creator><creator>Wang, Li</creator><creator>Wei, Wei</creator><creator>Liao, Yangci</creator><creator>Chen, Shaofeng</creator><creator>Tudeng, Qunpei</creator><creator>Can, Muyou</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9123-2645</orcidid></search><sort><creationdate>20210601</creationdate><title>Adaptation and response of Kobresia littledalei to cold stress conditions</title><author>Qu, Guangpeng ; Baima, Gaweng ; Liu, Yunfei ; Wang, Li ; Wei, Wei ; Liao, Yangci ; Chen, Shaofeng ; Tudeng, Qunpei ; Can, Muyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b8bc4294446cca16ba5e442e528e7b26aac5fd46cb1f09cc1f779e715edd7ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Agriculture</topic><topic>Annotations</topic><topic>Biomedical and Life Sciences</topic><topic>Cellular stress response</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cold</topic><topic>Cold resistance</topic><topic>Cold treatment</topic><topic>Cryogenic treatment</topic><topic>Encyclopedias</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Kobresia</topic><topic>Life Sciences</topic><topic>Low temperature resistance</topic><topic>Metabolic response</topic><topic>Molecular modelling</topic><topic>Next-generation sequencing</topic><topic>Original Article</topic><topic>Plant Anatomy/Development</topic><topic>Plant Biochemistry</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Protein families</topic><topic>Transcriptomes</topic><topic>Vegetation type</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Guangpeng</creatorcontrib><creatorcontrib>Baima, Gaweng</creatorcontrib><creatorcontrib>Liu, Yunfei</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Liao, Yangci</creatorcontrib><creatorcontrib>Chen, Shaofeng</creatorcontrib><creatorcontrib>Tudeng, Qunpei</creatorcontrib><creatorcontrib>Can, Muyou</creatorcontrib><collection>CrossRef</collection><jtitle>Acta physiologiae plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Guangpeng</au><au>Baima, Gaweng</au><au>Liu, Yunfei</au><au>Wang, Li</au><au>Wei, Wei</au><au>Liao, Yangci</au><au>Chen, Shaofeng</au><au>Tudeng, Qunpei</au><au>Can, Muyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation and response of Kobresia littledalei to cold stress conditions</atitle><jtitle>Acta physiologiae plantarum</jtitle><stitle>Acta Physiol Plant</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>43</volume><issue>6</issue><artnum>92</artnum><issn>0137-5881</issn><eissn>1861-1664</eissn><abstract>Kobresia plant ( Kobresia littledalei ) is the dominant vegetation type in the Qinghai-Tibet Plateau region where the temperatures can be extremely low and harsh during winter. However, the potential molecular mechanisms that respond to cold remain to be fully elucidated. In this study, we applied the use of high-throughput sequencing technology in investigating the genes involved in Kobresia plant acclimation and response to cold stress. Kobresia plants were grown in pots for 7 days in a 25 °C greenhouse and thereafter subdivided into 6 batches (Kli-0 to Kli-5) that were exposed to cold-treatment in a – 5 °C cryogenic treatment room at varying timelines (0–48 h); With Kli-0 batch being the control (untreated). We sequenced the treated samples and obtained 90,331,944 clean reads. Clustering analysis assigned a total of 214,531 assembled trinity genes. For functional annotation, all the assembled unigenes were aligned against public databases that include NCBI’s Pfam (Pfam protein families), Uniprot (Swiss-Prot), KEGG (Kyoto Encyclopedia of Genes and Genomes database) and KOG (eukaryotic orthologous groups) classification system was used to assign the possible functions of the obtained unigenes. From these, we linked a great number of candidate genes to the cold stress response. Several significant DEGs and metabolic responses were identified and discussed. Further, we identified significant DEG’s from the transcriptome data. AP2/ERF-ERF gene family could be playing a significant role that enhances the survival of K. littledalei to cold stress conditions. In conclusion, our findings herein further the general understanding of Kobresia plants' adaptation and responses to cold stress through the molecular mechanisms involved in signal regulation and cold resistance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11738-021-03246-w</doi><orcidid>https://orcid.org/0000-0002-9123-2645</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0137-5881
ispartof Acta physiologiae plantarum, 2021-06, Vol.43 (6), Article 92
issn 0137-5881
1861-1664
language eng
recordid cdi_proquest_journals_2536532273
source Springer Nature - Complete Springer Journals
subjects Acclimation
Acclimatization
Adaptation
Agriculture
Annotations
Biomedical and Life Sciences
Cellular stress response
Cluster analysis
Clustering
Cold
Cold resistance
Cold treatment
Cryogenic treatment
Encyclopedias
Gene expression
Genes
Genomes
Kobresia
Life Sciences
Low temperature resistance
Metabolic response
Molecular modelling
Next-generation sequencing
Original Article
Plant Anatomy/Development
Plant Biochemistry
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Protein families
Transcriptomes
Vegetation type
title Adaptation and response of Kobresia littledalei to cold stress conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20and%20response%20of%20Kobresia%20littledalei%20to%20cold%20stress%20conditions&rft.jtitle=Acta%20physiologiae%20plantarum&rft.au=Qu,%20Guangpeng&rft.date=2021-06-01&rft.volume=43&rft.issue=6&rft.artnum=92&rft.issn=0137-5881&rft.eissn=1861-1664&rft_id=info:doi/10.1007/s11738-021-03246-w&rft_dat=%3Cproquest_cross%3E2536532273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536532273&rft_id=info:pmid/&rfr_iscdi=true