Risk Early Warning Research on China's Futures Company
Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during whi...
Gespeichert in:
Veröffentlicht in: | Emerging markets finance & trade 2021-06, Vol.57 (8), p.2259-2270 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2270 |
---|---|
container_issue | 8 |
container_start_page | 2259 |
container_title | Emerging markets finance & trade |
container_volume | 57 |
creator | Ping, Wang Wang, Feng Wang, Aihua Huang, Yuncheng |
description | Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during which fluctuation in extreme market risk occurred as the verification period and design overall risk indicators and equations to measure market risk for futures trading companies. We built an early risk warning model using extreme learning machine technology. We tested our model's validity using statistics from China's futures market. Empirical evidence shows that our model is more accurate than models based on the support vector machine, logistic regression, and the back-propagation neural network. |
doi_str_mv | 10.1080/1540496X.2019.1689355 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2536148460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536148460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-1ce09d6c3b028c84b4486f12e9e9c8829a8b408802139cf199d75e2ef57226a33</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKd_ghDw4Kkzv5vclOJUGAhD0VvIstR1dslMWqT_vS2dePP03uH73oMPgEuMZhhJdIM5Q0yJ9xlBWM2wkIpyfgQmmHOZIUXl8bAzlA3QKThLaYsQlhTLCRDLKn3CexPrDr6Z6Cv_AZcuORPtBgYPi03lzXWC87Zpo0uwCLu98d05OClNndzFYU7B6_z-pXjMFs8PT8XdIrOMyCbD1iG1FpauEJFWshVjUpSYOOWUlZIoI1cMSYkIpsqWWKl1zh1xJc8JEYbSKbga7-5j-GpdavQ2tNH3LzXhVGAmmUA9xUfKxpBSdKXex2pnYqcx0kMi_ZtID4n0IVHvwdFzNvgq_Vm5wIIxhPMeuR2Rypch7sx3iPVaN6arQyyj8bbX6P9ffgCQUHWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536148460</pqid></control><display><type>article</type><title>Risk Early Warning Research on China's Futures Company</title><source>Business Source® Complete</source><creator>Ping, Wang ; Wang, Feng ; Wang, Aihua ; Huang, Yuncheng</creator><creatorcontrib>Ping, Wang ; Wang, Feng ; Wang, Aihua ; Huang, Yuncheng</creatorcontrib><description>Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during which fluctuation in extreme market risk occurred as the verification period and design overall risk indicators and equations to measure market risk for futures trading companies. We built an early risk warning model using extreme learning machine technology. We tested our model's validity using statistics from China's futures market. Empirical evidence shows that our model is more accurate than models based on the support vector machine, logistic regression, and the back-propagation neural network.</description><identifier>ISSN: 1540-496X</identifier><identifier>EISSN: 1558-0938</identifier><identifier>DOI: 10.1080/1540496X.2019.1689355</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Early risk warning ; extreme learning machine ; futures company ; Futures trading</subject><ispartof>Emerging markets finance & trade, 2021-06, Vol.57 (8), p.2259-2270</ispartof><rights>2019 Taylor & Francis Group, LLC 2019</rights><rights>2019 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-1ce09d6c3b028c84b4486f12e9e9c8829a8b408802139cf199d75e2ef57226a33</citedby><cites>FETCH-LOGICAL-c428t-1ce09d6c3b028c84b4486f12e9e9c8829a8b408802139cf199d75e2ef57226a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ping, Wang</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Wang, Aihua</creatorcontrib><creatorcontrib>Huang, Yuncheng</creatorcontrib><title>Risk Early Warning Research on China's Futures Company</title><title>Emerging markets finance & trade</title><description>Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during which fluctuation in extreme market risk occurred as the verification period and design overall risk indicators and equations to measure market risk for futures trading companies. We built an early risk warning model using extreme learning machine technology. We tested our model's validity using statistics from China's futures market. Empirical evidence shows that our model is more accurate than models based on the support vector machine, logistic regression, and the back-propagation neural network.</description><subject>Early risk warning</subject><subject>extreme learning machine</subject><subject>futures company</subject><subject>Futures trading</subject><issn>1540-496X</issn><issn>1558-0938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKd_ghDw4Kkzv5vclOJUGAhD0VvIstR1dslMWqT_vS2dePP03uH73oMPgEuMZhhJdIM5Q0yJ9xlBWM2wkIpyfgQmmHOZIUXl8bAzlA3QKThLaYsQlhTLCRDLKn3CexPrDr6Z6Cv_AZcuORPtBgYPi03lzXWC87Zpo0uwCLu98d05OClNndzFYU7B6_z-pXjMFs8PT8XdIrOMyCbD1iG1FpauEJFWshVjUpSYOOWUlZIoI1cMSYkIpsqWWKl1zh1xJc8JEYbSKbga7-5j-GpdavQ2tNH3LzXhVGAmmUA9xUfKxpBSdKXex2pnYqcx0kMi_ZtID4n0IVHvwdFzNvgq_Vm5wIIxhPMeuR2Rypch7sx3iPVaN6arQyyj8bbX6P9ffgCQUHWf</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>Ping, Wang</creator><creator>Wang, Feng</creator><creator>Wang, Aihua</creator><creator>Huang, Yuncheng</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210621</creationdate><title>Risk Early Warning Research on China's Futures Company</title><author>Ping, Wang ; Wang, Feng ; Wang, Aihua ; Huang, Yuncheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-1ce09d6c3b028c84b4486f12e9e9c8829a8b408802139cf199d75e2ef57226a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Early risk warning</topic><topic>extreme learning machine</topic><topic>futures company</topic><topic>Futures trading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ping, Wang</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Wang, Aihua</creatorcontrib><creatorcontrib>Huang, Yuncheng</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Emerging markets finance & trade</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ping, Wang</au><au>Wang, Feng</au><au>Wang, Aihua</au><au>Huang, Yuncheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk Early Warning Research on China's Futures Company</atitle><jtitle>Emerging markets finance & trade</jtitle><date>2021-06-21</date><risdate>2021</risdate><volume>57</volume><issue>8</issue><spage>2259</spage><epage>2270</epage><pages>2259-2270</pages><issn>1540-496X</issn><eissn>1558-0938</eissn><abstract>Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during which fluctuation in extreme market risk occurred as the verification period and design overall risk indicators and equations to measure market risk for futures trading companies. We built an early risk warning model using extreme learning machine technology. We tested our model's validity using statistics from China's futures market. Empirical evidence shows that our model is more accurate than models based on the support vector machine, logistic regression, and the back-propagation neural network.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/1540496X.2019.1689355</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-496X |
ispartof | Emerging markets finance & trade, 2021-06, Vol.57 (8), p.2259-2270 |
issn | 1540-496X 1558-0938 |
language | eng |
recordid | cdi_proquest_journals_2536148460 |
source | Business Source® Complete |
subjects | Early risk warning extreme learning machine futures company Futures trading |
title | Risk Early Warning Research on China's Futures Company |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20Early%20Warning%20Research%20on%20China's%20Futures%20Company&rft.jtitle=Emerging%20markets%20finance%20&%20trade&rft.au=Ping,%20Wang&rft.date=2021-06-21&rft.volume=57&rft.issue=8&rft.spage=2259&rft.epage=2270&rft.pages=2259-2270&rft.issn=1540-496X&rft.eissn=1558-0938&rft_id=info:doi/10.1080/1540496X.2019.1689355&rft_dat=%3Cproquest_infor%3E2536148460%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536148460&rft_id=info:pmid/&rfr_iscdi=true |