Risk Early Warning Research on China's Futures Company

Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Emerging markets finance & trade 2021-06, Vol.57 (8), p.2259-2270
Hauptverfasser: Ping, Wang, Wang, Feng, Wang, Aihua, Huang, Yuncheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2270
container_issue 8
container_start_page 2259
container_title Emerging markets finance & trade
container_volume 57
creator Ping, Wang
Wang, Feng
Wang, Aihua
Huang, Yuncheng
description Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during which fluctuation in extreme market risk occurred as the verification period and design overall risk indicators and equations to measure market risk for futures trading companies. We built an early risk warning model using extreme learning machine technology. We tested our model's validity using statistics from China's futures market. Empirical evidence shows that our model is more accurate than models based on the support vector machine, logistic regression, and the back-propagation neural network.
doi_str_mv 10.1080/1540496X.2019.1689355
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2536148460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536148460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-1ce09d6c3b028c84b4486f12e9e9c8829a8b408802139cf199d75e2ef57226a33</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKd_ghDw4Kkzv5vclOJUGAhD0VvIstR1dslMWqT_vS2dePP03uH73oMPgEuMZhhJdIM5Q0yJ9xlBWM2wkIpyfgQmmHOZIUXl8bAzlA3QKThLaYsQlhTLCRDLKn3CexPrDr6Z6Cv_AZcuORPtBgYPi03lzXWC87Zpo0uwCLu98d05OClNndzFYU7B6_z-pXjMFs8PT8XdIrOMyCbD1iG1FpauEJFWshVjUpSYOOWUlZIoI1cMSYkIpsqWWKl1zh1xJc8JEYbSKbga7-5j-GpdavQ2tNH3LzXhVGAmmUA9xUfKxpBSdKXex2pnYqcx0kMi_ZtID4n0IVHvwdFzNvgq_Vm5wIIxhPMeuR2Rypch7sx3iPVaN6arQyyj8bbX6P9ffgCQUHWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536148460</pqid></control><display><type>article</type><title>Risk Early Warning Research on China's Futures Company</title><source>Business Source® Complete</source><creator>Ping, Wang ; Wang, Feng ; Wang, Aihua ; Huang, Yuncheng</creator><creatorcontrib>Ping, Wang ; Wang, Feng ; Wang, Aihua ; Huang, Yuncheng</creatorcontrib><description>Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during which fluctuation in extreme market risk occurred as the verification period and design overall risk indicators and equations to measure market risk for futures trading companies. We built an early risk warning model using extreme learning machine technology. We tested our model's validity using statistics from China's futures market. Empirical evidence shows that our model is more accurate than models based on the support vector machine, logistic regression, and the back-propagation neural network.</description><identifier>ISSN: 1540-496X</identifier><identifier>EISSN: 1558-0938</identifier><identifier>DOI: 10.1080/1540496X.2019.1689355</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Early risk warning ; extreme learning machine ; futures company ; Futures trading</subject><ispartof>Emerging markets finance &amp; trade, 2021-06, Vol.57 (8), p.2259-2270</ispartof><rights>2019 Taylor &amp; Francis Group, LLC 2019</rights><rights>2019 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-1ce09d6c3b028c84b4486f12e9e9c8829a8b408802139cf199d75e2ef57226a33</citedby><cites>FETCH-LOGICAL-c428t-1ce09d6c3b028c84b4486f12e9e9c8829a8b408802139cf199d75e2ef57226a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ping, Wang</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Wang, Aihua</creatorcontrib><creatorcontrib>Huang, Yuncheng</creatorcontrib><title>Risk Early Warning Research on China's Futures Company</title><title>Emerging markets finance &amp; trade</title><description>Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during which fluctuation in extreme market risk occurred as the verification period and design overall risk indicators and equations to measure market risk for futures trading companies. We built an early risk warning model using extreme learning machine technology. We tested our model's validity using statistics from China's futures market. Empirical evidence shows that our model is more accurate than models based on the support vector machine, logistic regression, and the back-propagation neural network.</description><subject>Early risk warning</subject><subject>extreme learning machine</subject><subject>futures company</subject><subject>Futures trading</subject><issn>1540-496X</issn><issn>1558-0938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKd_ghDw4Kkzv5vclOJUGAhD0VvIstR1dslMWqT_vS2dePP03uH73oMPgEuMZhhJdIM5Q0yJ9xlBWM2wkIpyfgQmmHOZIUXl8bAzlA3QKThLaYsQlhTLCRDLKn3CexPrDr6Z6Cv_AZcuORPtBgYPi03lzXWC87Zpo0uwCLu98d05OClNndzFYU7B6_z-pXjMFs8PT8XdIrOMyCbD1iG1FpauEJFWshVjUpSYOOWUlZIoI1cMSYkIpsqWWKl1zh1xJc8JEYbSKbga7-5j-GpdavQ2tNH3LzXhVGAmmUA9xUfKxpBSdKXex2pnYqcx0kMi_ZtID4n0IVHvwdFzNvgq_Vm5wIIxhPMeuR2Rypch7sx3iPVaN6arQyyj8bbX6P9ffgCQUHWf</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>Ping, Wang</creator><creator>Wang, Feng</creator><creator>Wang, Aihua</creator><creator>Huang, Yuncheng</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210621</creationdate><title>Risk Early Warning Research on China's Futures Company</title><author>Ping, Wang ; Wang, Feng ; Wang, Aihua ; Huang, Yuncheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-1ce09d6c3b028c84b4486f12e9e9c8829a8b408802139cf199d75e2ef57226a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Early risk warning</topic><topic>extreme learning machine</topic><topic>futures company</topic><topic>Futures trading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ping, Wang</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Wang, Aihua</creatorcontrib><creatorcontrib>Huang, Yuncheng</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Emerging markets finance &amp; trade</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ping, Wang</au><au>Wang, Feng</au><au>Wang, Aihua</au><au>Huang, Yuncheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk Early Warning Research on China's Futures Company</atitle><jtitle>Emerging markets finance &amp; trade</jtitle><date>2021-06-21</date><risdate>2021</risdate><volume>57</volume><issue>8</issue><spage>2259</spage><epage>2270</epage><pages>2259-2270</pages><issn>1540-496X</issn><eissn>1558-0938</eissn><abstract>Having effective and reliable risk management is essential for the development of futures trading companies in China. Research analyzing early warnings on related risks for futures trading companies in China have important theoretical and empirical value. In this paper, we take the period during which fluctuation in extreme market risk occurred as the verification period and design overall risk indicators and equations to measure market risk for futures trading companies. We built an early risk warning model using extreme learning machine technology. We tested our model's validity using statistics from China's futures market. Empirical evidence shows that our model is more accurate than models based on the support vector machine, logistic regression, and the back-propagation neural network.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/1540496X.2019.1689355</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1540-496X
ispartof Emerging markets finance & trade, 2021-06, Vol.57 (8), p.2259-2270
issn 1540-496X
1558-0938
language eng
recordid cdi_proquest_journals_2536148460
source Business Source® Complete
subjects Early risk warning
extreme learning machine
futures company
Futures trading
title Risk Early Warning Research on China's Futures Company
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20Early%20Warning%20Research%20on%20China's%20Futures%20Company&rft.jtitle=Emerging%20markets%20finance%20&%20trade&rft.au=Ping,%20Wang&rft.date=2021-06-21&rft.volume=57&rft.issue=8&rft.spage=2259&rft.epage=2270&rft.pages=2259-2270&rft.issn=1540-496X&rft.eissn=1558-0938&rft_id=info:doi/10.1080/1540496X.2019.1689355&rft_dat=%3Cproquest_infor%3E2536148460%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536148460&rft_id=info:pmid/&rfr_iscdi=true