Approximate polymorphisms
For a function \(g\colon\{0,1\}^m\to\{0,1\}\), a function \(f\colon \{0,1\}^n\to\{0,1\}\) is called a \(g\)-polymorphism if their actions commute: \(f(g(\mathsf{row}_1(Z)),\ldots,g(\mathsf{row}_n(Z))) = g(f(\mathsf{col}_1(Z)),\ldots,f(\mathsf{col}_m(Z)))\) for all \(Z\in\{0,1\}^{n\times m}\). The fu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chase, Gilad Filmus, Yuval Dor Minzer Mossel, Elchanan Saurabh, Nitin |
description | For a function \(g\colon\{0,1\}^m\to\{0,1\}\), a function \(f\colon \{0,1\}^n\to\{0,1\}\) is called a \(g\)-polymorphism if their actions commute: \(f(g(\mathsf{row}_1(Z)),\ldots,g(\mathsf{row}_n(Z))) = g(f(\mathsf{col}_1(Z)),\ldots,f(\mathsf{col}_m(Z)))\) for all \(Z\in\{0,1\}^{n\times m}\). The function \(f\) is called an approximate polymorphism if this equality holds with probability close to \(1\), when \(Z\) is sampled uniformly. We study the structure of exact polymorphisms as well as approximate polymorphisms. Our results include: - We prove that an approximate polymorphism \(f\) must be close to an exact polymorphism; - We give a characterization of exact polymorphisms, showing that besides trivial cases, only the functions \(g = \mathsf{AND}, \mathsf{XOR}, \mathsf{OR}, \mathsf{NXOR}\) admit non-trivial exact polymorphisms. We also study the approximate polymorphism problem in the list-decoding regime (i.e., when the probability equality holds is not close to \(1\), but is bounded away from some value). We show that if \(f(x \land y) = f(x) \land f(y)\) with probability larger than \(s_\land \approx 0.815\) then \(f\) correlates with some low-degree character, and \(s_\land\) is the optimal threshold for this property. Our result generalize the classical linearity testing result of Blum, Luby and Rubinfeld, that in this language showed that the approximate polymorphisms of \(g = \mathsf{XOR}\) are close to XOR's, as well as a recent result of Filmus, Lifshitz, Minzer and Mossel, showing that the approximate polymorphisms of AND can only be close to AND functions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2536123468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536123468</sourcerecordid><originalsourceid>FETCH-proquest_journals_25361234683</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQdCwoKMqvyMxNLElVKMjPqczNLyrIyCzOLeZhYE1LzClO5YXS3AzKbq4hzh66QPWFpanFJfFZ-aVFeUCpeCNTYzNDI2MTMwtj4lQBAOMfKz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536123468</pqid></control><display><type>article</type><title>Approximate polymorphisms</title><source>Free E- Journals</source><creator>Chase, Gilad ; Filmus, Yuval ; Dor Minzer ; Mossel, Elchanan ; Saurabh, Nitin</creator><creatorcontrib>Chase, Gilad ; Filmus, Yuval ; Dor Minzer ; Mossel, Elchanan ; Saurabh, Nitin</creatorcontrib><description>For a function \(g\colon\{0,1\}^m\to\{0,1\}\), a function \(f\colon \{0,1\}^n\to\{0,1\}\) is called a \(g\)-polymorphism if their actions commute: \(f(g(\mathsf{row}_1(Z)),\ldots,g(\mathsf{row}_n(Z))) = g(f(\mathsf{col}_1(Z)),\ldots,f(\mathsf{col}_m(Z)))\) for all \(Z\in\{0,1\}^{n\times m}\). The function \(f\) is called an approximate polymorphism if this equality holds with probability close to \(1\), when \(Z\) is sampled uniformly. We study the structure of exact polymorphisms as well as approximate polymorphisms. Our results include: - We prove that an approximate polymorphism \(f\) must be close to an exact polymorphism; - We give a characterization of exact polymorphisms, showing that besides trivial cases, only the functions \(g = \mathsf{AND}, \mathsf{XOR}, \mathsf{OR}, \mathsf{NXOR}\) admit non-trivial exact polymorphisms. We also study the approximate polymorphism problem in the list-decoding regime (i.e., when the probability equality holds is not close to \(1\), but is bounded away from some value). We show that if \(f(x \land y) = f(x) \land f(y)\) with probability larger than \(s_\land \approx 0.815\) then \(f\) correlates with some low-degree character, and \(s_\land\) is the optimal threshold for this property. Our result generalize the classical linearity testing result of Blum, Luby and Rubinfeld, that in this language showed that the approximate polymorphisms of \(g = \mathsf{XOR}\) are close to XOR's, as well as a recent result of Filmus, Lifshitz, Minzer and Mossel, showing that the approximate polymorphisms of AND can only be close to AND functions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Colon ; Polymorphism</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chase, Gilad</creatorcontrib><creatorcontrib>Filmus, Yuval</creatorcontrib><creatorcontrib>Dor Minzer</creatorcontrib><creatorcontrib>Mossel, Elchanan</creatorcontrib><creatorcontrib>Saurabh, Nitin</creatorcontrib><title>Approximate polymorphisms</title><title>arXiv.org</title><description>For a function \(g\colon\{0,1\}^m\to\{0,1\}\), a function \(f\colon \{0,1\}^n\to\{0,1\}\) is called a \(g\)-polymorphism if their actions commute: \(f(g(\mathsf{row}_1(Z)),\ldots,g(\mathsf{row}_n(Z))) = g(f(\mathsf{col}_1(Z)),\ldots,f(\mathsf{col}_m(Z)))\) for all \(Z\in\{0,1\}^{n\times m}\). The function \(f\) is called an approximate polymorphism if this equality holds with probability close to \(1\), when \(Z\) is sampled uniformly. We study the structure of exact polymorphisms as well as approximate polymorphisms. Our results include: - We prove that an approximate polymorphism \(f\) must be close to an exact polymorphism; - We give a characterization of exact polymorphisms, showing that besides trivial cases, only the functions \(g = \mathsf{AND}, \mathsf{XOR}, \mathsf{OR}, \mathsf{NXOR}\) admit non-trivial exact polymorphisms. We also study the approximate polymorphism problem in the list-decoding regime (i.e., when the probability equality holds is not close to \(1\), but is bounded away from some value). We show that if \(f(x \land y) = f(x) \land f(y)\) with probability larger than \(s_\land \approx 0.815\) then \(f\) correlates with some low-degree character, and \(s_\land\) is the optimal threshold for this property. Our result generalize the classical linearity testing result of Blum, Luby and Rubinfeld, that in this language showed that the approximate polymorphisms of \(g = \mathsf{XOR}\) are close to XOR's, as well as a recent result of Filmus, Lifshitz, Minzer and Mossel, showing that the approximate polymorphisms of AND can only be close to AND functions.</description><subject>Colon</subject><subject>Polymorphism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQdCwoKMqvyMxNLElVKMjPqczNLyrIyCzOLeZhYE1LzClO5YXS3AzKbq4hzh66QPWFpanFJfFZ-aVFeUCpeCNTYzNDI2MTMwtj4lQBAOMfKz4</recordid><startdate>20210620</startdate><enddate>20210620</enddate><creator>Chase, Gilad</creator><creator>Filmus, Yuval</creator><creator>Dor Minzer</creator><creator>Mossel, Elchanan</creator><creator>Saurabh, Nitin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210620</creationdate><title>Approximate polymorphisms</title><author>Chase, Gilad ; Filmus, Yuval ; Dor Minzer ; Mossel, Elchanan ; Saurabh, Nitin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25361234683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Colon</topic><topic>Polymorphism</topic><toplevel>online_resources</toplevel><creatorcontrib>Chase, Gilad</creatorcontrib><creatorcontrib>Filmus, Yuval</creatorcontrib><creatorcontrib>Dor Minzer</creatorcontrib><creatorcontrib>Mossel, Elchanan</creatorcontrib><creatorcontrib>Saurabh, Nitin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chase, Gilad</au><au>Filmus, Yuval</au><au>Dor Minzer</au><au>Mossel, Elchanan</au><au>Saurabh, Nitin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Approximate polymorphisms</atitle><jtitle>arXiv.org</jtitle><date>2021-06-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>For a function \(g\colon\{0,1\}^m\to\{0,1\}\), a function \(f\colon \{0,1\}^n\to\{0,1\}\) is called a \(g\)-polymorphism if their actions commute: \(f(g(\mathsf{row}_1(Z)),\ldots,g(\mathsf{row}_n(Z))) = g(f(\mathsf{col}_1(Z)),\ldots,f(\mathsf{col}_m(Z)))\) for all \(Z\in\{0,1\}^{n\times m}\). The function \(f\) is called an approximate polymorphism if this equality holds with probability close to \(1\), when \(Z\) is sampled uniformly. We study the structure of exact polymorphisms as well as approximate polymorphisms. Our results include: - We prove that an approximate polymorphism \(f\) must be close to an exact polymorphism; - We give a characterization of exact polymorphisms, showing that besides trivial cases, only the functions \(g = \mathsf{AND}, \mathsf{XOR}, \mathsf{OR}, \mathsf{NXOR}\) admit non-trivial exact polymorphisms. We also study the approximate polymorphism problem in the list-decoding regime (i.e., when the probability equality holds is not close to \(1\), but is bounded away from some value). We show that if \(f(x \land y) = f(x) \land f(y)\) with probability larger than \(s_\land \approx 0.815\) then \(f\) correlates with some low-degree character, and \(s_\land\) is the optimal threshold for this property. Our result generalize the classical linearity testing result of Blum, Luby and Rubinfeld, that in this language showed that the approximate polymorphisms of \(g = \mathsf{XOR}\) are close to XOR's, as well as a recent result of Filmus, Lifshitz, Minzer and Mossel, showing that the approximate polymorphisms of AND can only be close to AND functions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2536123468 |
source | Free E- Journals |
subjects | Colon Polymorphism |
title | Approximate polymorphisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Approximate%20polymorphisms&rft.jtitle=arXiv.org&rft.au=Chase,%20Gilad&rft.date=2021-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2536123468%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536123468&rft_id=info:pmid/&rfr_iscdi=true |