Fine-Tuned Deep Convolutional Networks for the Detection of Femoral Neck Fractures on Pelvic Radiographs: A Multicenter Dataset Validation

In this study, we aim to provide a deep convolutional network based femoral neck fracture detection system on radiographs for emergency patients. We retrospectively collected 1,491 frontal pelvic radiographs from three institutions and assigned them to the following data sets: primary dataset (710 r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.78495-78503
Hauptverfasser: Mu, Lin, Qu, Taiping, Dong, Dong, Li, Xiuli, Pei, Yun, Wang, Yuchong, Shi, Guangyao, Li, Yongrui, He, Fujin, Zhang, Huimao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78503
container_issue
container_start_page 78495
container_title IEEE access
container_volume 9
creator Mu, Lin
Qu, Taiping
Dong, Dong
Li, Xiuli
Pei, Yun
Wang, Yuchong
Shi, Guangyao
Li, Yongrui
He, Fujin
Zhang, Huimao
description In this study, we aim to provide a deep convolutional network based femoral neck fracture detection system on radiographs for emergency patients. We retrospectively collected 1,491 frontal pelvic radiographs from three institutions and assigned them to the following data sets: primary dataset (710 radiographs, to fine-tune and validate the initial model called the Digital Radiography Fracture Detection System [DR-FDS]), internal test set 1 (189 radiographs) and 2 (235 radiographs), and external test set 1 (189 radiographs) and 2 (168 radiographs). Per-bounding box recall and precision and per-image sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were computed. We randomly extracted 300 radiographs from the above test sets and compared their effect on the diagnostic accuracy and efficiency of fine-tuned model-assisted and unassisted clinicians. The fine-tuned DR-FDS showed a better overall performance in detecting femoral neck fractures than did the initial DR-FDS. The fine-tuned DR-FDS achieved AUC values of 0.9526 (95%CI, 0.9048-0.9767) and 0.9633(95%CI, 0.9346-0.9797) in internal test sets 1 and 2. In external test sets 1 and 2, this model also achieved promising results with AUC values of 0.9231 (95%CI, 0.8779-0.9520), and 0.9937 (95%CI 0.9739-0.9985), respectively. The clinicians showed a statistically significant increase in specificity, sensitivity, and accuracy for the identification of minimal/undisplaced fracture and a decrease in the average reading time. The object detection model that is fine-tuned has high sensitivity and specificity and the universal ability to detect and locate femoral neck fractures on pelvic radiographs.
doi_str_mv 10.1109/ACCESS.2021.3082952
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2536030554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9439888</ieee_id><doaj_id>oai_doaj_org_article_886fb18ac859477785388226ff7d5b69</doaj_id><sourcerecordid>2536030554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ec21429ee7c71170cdc78dfcc68fecac4bdcd246a8ccf2065e95531e4d8a52353</originalsourceid><addsrcrecordid>eNpNUdtu1DAQjRBIVKVf0BdLPGfxJY4d3lZpt1QqF9HCq-Udj9ts03ixnSJ-ga_G21QV8-LRzDlnrHOq6pTRFWO0-7Du-_Pr6xWnnK0E1byT_FV1xFnb1UKK9vV__dvqJKUdLaXLSKqj6u9mmLC-mSd05AxxT_owPYZxzkOY7Ei-YP4d4n0iPkSS77BgMsJhSYInG3wI8QkF92QTLeQ5YiJl-Q3HxwHId-uGcBvt_i59JGvyeR7zADhljOTMZpswk592HJw9KL6r3ng7Jjx5fo-rH5vzm_5TffX14rJfX9XQKJ1rBM4a3iEqUIwpCg6Udh6g1R7BQrN14HjTWg3gOW0ldlIKho3TVvLiwnF1uei6YHdmH4cHG_-YYAfzNAjx1thY_jmi0br1W6YtaNk1Sikthdact94rJ7dtV7TeL1r7GH7NmLLZhTkW55LhxW8qqJRNQYkFBTGkFNG_XGXUHDI0S4bmkKF5zrCwThfWgIgvjK4RndZa_APMQJk1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536030554</pqid></control><display><type>article</type><title>Fine-Tuned Deep Convolutional Networks for the Detection of Femoral Neck Fractures on Pelvic Radiographs: A Multicenter Dataset Validation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mu, Lin ; Qu, Taiping ; Dong, Dong ; Li, Xiuli ; Pei, Yun ; Wang, Yuchong ; Shi, Guangyao ; Li, Yongrui ; He, Fujin ; Zhang, Huimao</creator><creatorcontrib>Mu, Lin ; Qu, Taiping ; Dong, Dong ; Li, Xiuli ; Pei, Yun ; Wang, Yuchong ; Shi, Guangyao ; Li, Yongrui ; He, Fujin ; Zhang, Huimao</creatorcontrib><description>In this study, we aim to provide a deep convolutional network based femoral neck fracture detection system on radiographs for emergency patients. We retrospectively collected 1,491 frontal pelvic radiographs from three institutions and assigned them to the following data sets: primary dataset (710 radiographs, to fine-tune and validate the initial model called the Digital Radiography Fracture Detection System [DR-FDS]), internal test set 1 (189 radiographs) and 2 (235 radiographs), and external test set 1 (189 radiographs) and 2 (168 radiographs). Per-bounding box recall and precision and per-image sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were computed. We randomly extracted 300 radiographs from the above test sets and compared their effect on the diagnostic accuracy and efficiency of fine-tuned model-assisted and unassisted clinicians. The fine-tuned DR-FDS showed a better overall performance in detecting femoral neck fractures than did the initial DR-FDS. The fine-tuned DR-FDS achieved AUC values of 0.9526 (95%CI, 0.9048-0.9767) and 0.9633(95%CI, 0.9346-0.9797) in internal test sets 1 and 2. In external test sets 1 and 2, this model also achieved promising results with AUC values of 0.9231 (95%CI, 0.8779-0.9520), and 0.9937 (95%CI 0.9739-0.9985), respectively. The clinicians showed a statistically significant increase in specificity, sensitivity, and accuracy for the identification of minimal/undisplaced fracture and a decrease in the average reading time. The object detection model that is fine-tuned has high sensitivity and specificity and the universal ability to detect and locate femoral neck fractures on pelvic radiographs.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3082952</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>convolutional neural network ; Datasets ; Diagnostic radiography ; Feature extraction ; Femoral neck fractures ; fine-tuning ; Fractures ; Hip ; Hospitals ; Model accuracy ; Neck ; Object recognition ; Radiographs ; Radiography ; Radiology ; Sensitivity ; small sample ; Test sets ; Training</subject><ispartof>IEEE access, 2021, Vol.9, p.78495-78503</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-ec21429ee7c71170cdc78dfcc68fecac4bdcd246a8ccf2065e95531e4d8a52353</citedby><cites>FETCH-LOGICAL-c478t-ec21429ee7c71170cdc78dfcc68fecac4bdcd246a8ccf2065e95531e4d8a52353</cites><orcidid>0000-0002-7126-3938 ; 0000-0003-3377-892X ; 0000-0002-9624-7440 ; 0000-0003-4289-8878 ; 0000-0001-6125-8185 ; 0000-0002-0029-8367 ; 0000-0001-5058-3433 ; 0000-0003-3291-5363 ; 0000-0003-0443-2831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9439888$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mu, Lin</creatorcontrib><creatorcontrib>Qu, Taiping</creatorcontrib><creatorcontrib>Dong, Dong</creatorcontrib><creatorcontrib>Li, Xiuli</creatorcontrib><creatorcontrib>Pei, Yun</creatorcontrib><creatorcontrib>Wang, Yuchong</creatorcontrib><creatorcontrib>Shi, Guangyao</creatorcontrib><creatorcontrib>Li, Yongrui</creatorcontrib><creatorcontrib>He, Fujin</creatorcontrib><creatorcontrib>Zhang, Huimao</creatorcontrib><title>Fine-Tuned Deep Convolutional Networks for the Detection of Femoral Neck Fractures on Pelvic Radiographs: A Multicenter Dataset Validation</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this study, we aim to provide a deep convolutional network based femoral neck fracture detection system on radiographs for emergency patients. We retrospectively collected 1,491 frontal pelvic radiographs from three institutions and assigned them to the following data sets: primary dataset (710 radiographs, to fine-tune and validate the initial model called the Digital Radiography Fracture Detection System [DR-FDS]), internal test set 1 (189 radiographs) and 2 (235 radiographs), and external test set 1 (189 radiographs) and 2 (168 radiographs). Per-bounding box recall and precision and per-image sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were computed. We randomly extracted 300 radiographs from the above test sets and compared their effect on the diagnostic accuracy and efficiency of fine-tuned model-assisted and unassisted clinicians. The fine-tuned DR-FDS showed a better overall performance in detecting femoral neck fractures than did the initial DR-FDS. The fine-tuned DR-FDS achieved AUC values of 0.9526 (95%CI, 0.9048-0.9767) and 0.9633(95%CI, 0.9346-0.9797) in internal test sets 1 and 2. In external test sets 1 and 2, this model also achieved promising results with AUC values of 0.9231 (95%CI, 0.8779-0.9520), and 0.9937 (95%CI 0.9739-0.9985), respectively. The clinicians showed a statistically significant increase in specificity, sensitivity, and accuracy for the identification of minimal/undisplaced fracture and a decrease in the average reading time. The object detection model that is fine-tuned has high sensitivity and specificity and the universal ability to detect and locate femoral neck fractures on pelvic radiographs.</description><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Diagnostic radiography</subject><subject>Feature extraction</subject><subject>Femoral neck fractures</subject><subject>fine-tuning</subject><subject>Fractures</subject><subject>Hip</subject><subject>Hospitals</subject><subject>Model accuracy</subject><subject>Neck</subject><subject>Object recognition</subject><subject>Radiographs</subject><subject>Radiography</subject><subject>Radiology</subject><subject>Sensitivity</subject><subject>small sample</subject><subject>Test sets</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtu1DAQjRBIVKVf0BdLPGfxJY4d3lZpt1QqF9HCq-Udj9ts03ixnSJ-ga_G21QV8-LRzDlnrHOq6pTRFWO0-7Du-_Pr6xWnnK0E1byT_FV1xFnb1UKK9vV__dvqJKUdLaXLSKqj6u9mmLC-mSd05AxxT_owPYZxzkOY7Ei-YP4d4n0iPkSS77BgMsJhSYInG3wI8QkF92QTLeQ5YiJl-Q3HxwHId-uGcBvt_i59JGvyeR7zADhljOTMZpswk592HJw9KL6r3ng7Jjx5fo-rH5vzm_5TffX14rJfX9XQKJ1rBM4a3iEqUIwpCg6Udh6g1R7BQrN14HjTWg3gOW0ldlIKho3TVvLiwnF1uei6YHdmH4cHG_-YYAfzNAjx1thY_jmi0br1W6YtaNk1Sikthdact94rJ7dtV7TeL1r7GH7NmLLZhTkW55LhxW8qqJRNQYkFBTGkFNG_XGXUHDI0S4bmkKF5zrCwThfWgIgvjK4RndZa_APMQJk1</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Mu, Lin</creator><creator>Qu, Taiping</creator><creator>Dong, Dong</creator><creator>Li, Xiuli</creator><creator>Pei, Yun</creator><creator>Wang, Yuchong</creator><creator>Shi, Guangyao</creator><creator>Li, Yongrui</creator><creator>He, Fujin</creator><creator>Zhang, Huimao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7126-3938</orcidid><orcidid>https://orcid.org/0000-0003-3377-892X</orcidid><orcidid>https://orcid.org/0000-0002-9624-7440</orcidid><orcidid>https://orcid.org/0000-0003-4289-8878</orcidid><orcidid>https://orcid.org/0000-0001-6125-8185</orcidid><orcidid>https://orcid.org/0000-0002-0029-8367</orcidid><orcidid>https://orcid.org/0000-0001-5058-3433</orcidid><orcidid>https://orcid.org/0000-0003-3291-5363</orcidid><orcidid>https://orcid.org/0000-0003-0443-2831</orcidid></search><sort><creationdate>2021</creationdate><title>Fine-Tuned Deep Convolutional Networks for the Detection of Femoral Neck Fractures on Pelvic Radiographs: A Multicenter Dataset Validation</title><author>Mu, Lin ; Qu, Taiping ; Dong, Dong ; Li, Xiuli ; Pei, Yun ; Wang, Yuchong ; Shi, Guangyao ; Li, Yongrui ; He, Fujin ; Zhang, Huimao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ec21429ee7c71170cdc78dfcc68fecac4bdcd246a8ccf2065e95531e4d8a52353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Diagnostic radiography</topic><topic>Feature extraction</topic><topic>Femoral neck fractures</topic><topic>fine-tuning</topic><topic>Fractures</topic><topic>Hip</topic><topic>Hospitals</topic><topic>Model accuracy</topic><topic>Neck</topic><topic>Object recognition</topic><topic>Radiographs</topic><topic>Radiography</topic><topic>Radiology</topic><topic>Sensitivity</topic><topic>small sample</topic><topic>Test sets</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Lin</creatorcontrib><creatorcontrib>Qu, Taiping</creatorcontrib><creatorcontrib>Dong, Dong</creatorcontrib><creatorcontrib>Li, Xiuli</creatorcontrib><creatorcontrib>Pei, Yun</creatorcontrib><creatorcontrib>Wang, Yuchong</creatorcontrib><creatorcontrib>Shi, Guangyao</creatorcontrib><creatorcontrib>Li, Yongrui</creatorcontrib><creatorcontrib>He, Fujin</creatorcontrib><creatorcontrib>Zhang, Huimao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Lin</au><au>Qu, Taiping</au><au>Dong, Dong</au><au>Li, Xiuli</au><au>Pei, Yun</au><au>Wang, Yuchong</au><au>Shi, Guangyao</au><au>Li, Yongrui</au><au>He, Fujin</au><au>Zhang, Huimao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Tuned Deep Convolutional Networks for the Detection of Femoral Neck Fractures on Pelvic Radiographs: A Multicenter Dataset Validation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>78495</spage><epage>78503</epage><pages>78495-78503</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this study, we aim to provide a deep convolutional network based femoral neck fracture detection system on radiographs for emergency patients. We retrospectively collected 1,491 frontal pelvic radiographs from three institutions and assigned them to the following data sets: primary dataset (710 radiographs, to fine-tune and validate the initial model called the Digital Radiography Fracture Detection System [DR-FDS]), internal test set 1 (189 radiographs) and 2 (235 radiographs), and external test set 1 (189 radiographs) and 2 (168 radiographs). Per-bounding box recall and precision and per-image sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were computed. We randomly extracted 300 radiographs from the above test sets and compared their effect on the diagnostic accuracy and efficiency of fine-tuned model-assisted and unassisted clinicians. The fine-tuned DR-FDS showed a better overall performance in detecting femoral neck fractures than did the initial DR-FDS. The fine-tuned DR-FDS achieved AUC values of 0.9526 (95%CI, 0.9048-0.9767) and 0.9633(95%CI, 0.9346-0.9797) in internal test sets 1 and 2. In external test sets 1 and 2, this model also achieved promising results with AUC values of 0.9231 (95%CI, 0.8779-0.9520), and 0.9937 (95%CI 0.9739-0.9985), respectively. The clinicians showed a statistically significant increase in specificity, sensitivity, and accuracy for the identification of minimal/undisplaced fracture and a decrease in the average reading time. The object detection model that is fine-tuned has high sensitivity and specificity and the universal ability to detect and locate femoral neck fractures on pelvic radiographs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3082952</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7126-3938</orcidid><orcidid>https://orcid.org/0000-0003-3377-892X</orcidid><orcidid>https://orcid.org/0000-0002-9624-7440</orcidid><orcidid>https://orcid.org/0000-0003-4289-8878</orcidid><orcidid>https://orcid.org/0000-0001-6125-8185</orcidid><orcidid>https://orcid.org/0000-0002-0029-8367</orcidid><orcidid>https://orcid.org/0000-0001-5058-3433</orcidid><orcidid>https://orcid.org/0000-0003-3291-5363</orcidid><orcidid>https://orcid.org/0000-0003-0443-2831</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.78495-78503
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2536030554
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects convolutional neural network
Datasets
Diagnostic radiography
Feature extraction
Femoral neck fractures
fine-tuning
Fractures
Hip
Hospitals
Model accuracy
Neck
Object recognition
Radiographs
Radiography
Radiology
Sensitivity
small sample
Test sets
Training
title Fine-Tuned Deep Convolutional Networks for the Detection of Femoral Neck Fractures on Pelvic Radiographs: A Multicenter Dataset Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Tuned%20Deep%20Convolutional%20Networks%20for%20the%20Detection%20of%20Femoral%20Neck%20Fractures%20on%20Pelvic%20Radiographs:%20A%20Multicenter%20Dataset%20Validation&rft.jtitle=IEEE%20access&rft.au=Mu,%20Lin&rft.date=2021&rft.volume=9&rft.spage=78495&rft.epage=78503&rft.pages=78495-78503&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3082952&rft_dat=%3Cproquest_doaj_%3E2536030554%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536030554&rft_id=info:pmid/&rft_ieee_id=9439888&rft_doaj_id=oai_doaj_org_article_886fb18ac859477785388226ff7d5b69&rfr_iscdi=true