Video Smoke Removal from a Single Image Sequence
In this study, we present a novel method for removing smoke from videos based on a single image sequence. Smoke is a significant artifact in images or videos because it can reduce the visibility in disaster scenes. Our proposed method for removing smoke involves two main processes: (1) the developme...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2021/06/01, Vol.E104.A(6), pp.876-886 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we present a novel method for removing smoke from videos based on a single image sequence. Smoke is a significant artifact in images or videos because it can reduce the visibility in disaster scenes. Our proposed method for removing smoke involves two main processes: (1) the development of a smoke imaging model and (2) smoke removal using spatio-temporal pixel compensation. First, we model the optical phenomena in natural scenes including smoke, which is called a smoke imaging model. Our smoke imaging model is developed by extending conventional haze imaging models. We then remove the smoke from a video in a frame-by-frame manner based on the smoke imaging model. Next, we refine the appearance of the smoke-free video by spatio-temporal pixel compensation, where we align the smoke-free frames using the corresponding pixels. To obtain the corresponding pixels, we use SIFT and color features with distance constraints. Finally, in order to obtain a clear video, we refine the pixel values based on the spatio-temporal weightings of the corresponding pixels in the smoke-free frames. We used simulated and actual smoke videos in our validation experiments. The experimental results demonstrated that our method can obtain effective smoke removal results from dynamic scenes. We also quantitatively assessed our method based on a temporal coherence measure. |
---|---|
ISSN: | 0916-8508 1745-1337 |
DOI: | 10.1587/transfun.2020IMP0013 |