Sum of Discrete Fuzzy Numbers with Fuzzy Set of Summands

The author analyzes the operation of addition of discrete fuzzy numbers with a fuzzy set of summand subscripts as a generalization of the sum operation with a crisp set of operands. The result of this operation is shown to be a type-2 fuzzy set (T2FS). The author generates the type-2 membership func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2021-05, Vol.57 (3), p.374-382
1. Verfasser: Mashchenko, S. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 3
container_start_page 374
container_title Cybernetics and systems analysis
container_volume 57
creator Mashchenko, S. O.
description The author analyzes the operation of addition of discrete fuzzy numbers with a fuzzy set of summand subscripts as a generalization of the sum operation with a crisp set of operands. The result of this operation is shown to be a type-2 fuzzy set (T2FS). The author generates the type-2 membership function of this set and introduces the concept of a T2FS of a sum of discrete numbers with a fuzzy set of summand subscripts. The sum T2FS can be decomposed, according to secondary membership grades, into the corresponding set of fuzzy numbers. It helps to represent the resultant T2FS in a form convenient for a proper understanding and application. Illustrative examples are given.
doi_str_mv 10.1007/s10559-021-00362-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2535878138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696852737</galeid><sourcerecordid>A696852737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-64cd5017f035577e936a032a426118dfdf8918cbbb00c39d0a9f0a52a2f66a703</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKdfwFPBk4fMN8nyp8cxnQ6GgtNzyNpkdqztTFrm9unN7EC8yHvIy4_nScIPoWsCAwIg7wIBzlMMlGAAJijenqAe4ZJhxZg8jTsIwMBScY4uQlhBpECqHlLztkxql9wXIfO2scmk3e93yXNbLqwPybZoPo7R3DYHMPKlqfJwic6cWQd7dTz76H3y8DZ-wrOXx-l4NMMZS2mDxTDLORDpgHEupU2ZMMCoGVJBiMpd7lRKVLZYLACikYNJHRhODXVCGAmsj266eze-_mxtaPSqbn0Vn9SUM66kIkxFatBRS7O2uqhc3XiTxcltWWR1ZV0R85FIheJUMhmF2z9CZBr71SxNG4Kezl__srRjM1-H4K3TG1-Uxu80AX2oX3f161i__qlfb6PEOilEuFpa__vvf6xvL7CFUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535878138</pqid></control><display><type>article</type><title>Sum of Discrete Fuzzy Numbers with Fuzzy Set of Summands</title><source>SpringerLink Journals</source><creator>Mashchenko, S. O.</creator><creatorcontrib>Mashchenko, S. O.</creatorcontrib><description>The author analyzes the operation of addition of discrete fuzzy numbers with a fuzzy set of summand subscripts as a generalization of the sum operation with a crisp set of operands. The result of this operation is shown to be a type-2 fuzzy set (T2FS). The author generates the type-2 membership function of this set and introduces the concept of a T2FS of a sum of discrete numbers with a fuzzy set of summand subscripts. The sum T2FS can be decomposed, according to secondary membership grades, into the corresponding set of fuzzy numbers. It helps to represent the resultant T2FS in a form convenient for a proper understanding and application. Illustrative examples are given.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-021-00362-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Control ; Fuzzy sets ; Mathematics ; Mathematics and Statistics ; Processor Architectures ; Software Engineering/Programming and Operating Systems ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2021-05, Vol.57 (3), p.374-382</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-64cd5017f035577e936a032a426118dfdf8918cbbb00c39d0a9f0a52a2f66a703</citedby><cites>FETCH-LOGICAL-c392t-64cd5017f035577e936a032a426118dfdf8918cbbb00c39d0a9f0a52a2f66a703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-021-00362-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-021-00362-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mashchenko, S. O.</creatorcontrib><title>Sum of Discrete Fuzzy Numbers with Fuzzy Set of Summands</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>The author analyzes the operation of addition of discrete fuzzy numbers with a fuzzy set of summand subscripts as a generalization of the sum operation with a crisp set of operands. The result of this operation is shown to be a type-2 fuzzy set (T2FS). The author generates the type-2 membership function of this set and introduces the concept of a T2FS of a sum of discrete numbers with a fuzzy set of summand subscripts. The sum T2FS can be decomposed, according to secondary membership grades, into the corresponding set of fuzzy numbers. It helps to represent the resultant T2FS in a form convenient for a proper understanding and application. Illustrative examples are given.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Fuzzy sets</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Processor Architectures</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKdfwFPBk4fMN8nyp8cxnQ6GgtNzyNpkdqztTFrm9unN7EC8yHvIy4_nScIPoWsCAwIg7wIBzlMMlGAAJijenqAe4ZJhxZg8jTsIwMBScY4uQlhBpECqHlLztkxql9wXIfO2scmk3e93yXNbLqwPybZoPo7R3DYHMPKlqfJwic6cWQd7dTz76H3y8DZ-wrOXx-l4NMMZS2mDxTDLORDpgHEupU2ZMMCoGVJBiMpd7lRKVLZYLACikYNJHRhODXVCGAmsj266eze-_mxtaPSqbn0Vn9SUM66kIkxFatBRS7O2uqhc3XiTxcltWWR1ZV0R85FIheJUMhmF2z9CZBr71SxNG4Kezl__srRjM1-H4K3TG1-Uxu80AX2oX3f161i__qlfb6PEOilEuFpa__vvf6xvL7CFUw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Mashchenko, S. O.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>20210501</creationdate><title>Sum of Discrete Fuzzy Numbers with Fuzzy Set of Summands</title><author>Mashchenko, S. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-64cd5017f035577e936a032a426118dfdf8918cbbb00c39d0a9f0a52a2f66a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Fuzzy sets</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Processor Architectures</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashchenko, S. O.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashchenko, S. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sum of Discrete Fuzzy Numbers with Fuzzy Set of Summands</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><spage>374</spage><epage>382</epage><pages>374-382</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>The author analyzes the operation of addition of discrete fuzzy numbers with a fuzzy set of summand subscripts as a generalization of the sum operation with a crisp set of operands. The result of this operation is shown to be a type-2 fuzzy set (T2FS). The author generates the type-2 membership function of this set and introduces the concept of a T2FS of a sum of discrete numbers with a fuzzy set of summand subscripts. The sum T2FS can be decomposed, according to secondary membership grades, into the corresponding set of fuzzy numbers. It helps to represent the resultant T2FS in a form convenient for a proper understanding and application. Illustrative examples are given.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-021-00362-w</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2021-05, Vol.57 (3), p.374-382
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_journals_2535878138
source SpringerLink Journals
subjects Artificial Intelligence
Control
Fuzzy sets
Mathematics
Mathematics and Statistics
Processor Architectures
Software Engineering/Programming and Operating Systems
Systems Theory
title Sum of Discrete Fuzzy Numbers with Fuzzy Set of Summands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sum%20of%20Discrete%20Fuzzy%20Numbers%20with%20Fuzzy%20Set%20of%20Summands&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Mashchenko,%20S.%20O.&rft.date=2021-05-01&rft.volume=57&rft.issue=3&rft.spage=374&rft.epage=382&rft.pages=374-382&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-021-00362-w&rft_dat=%3Cgale_proqu%3EA696852737%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535878138&rft_id=info:pmid/&rft_galeid=A696852737&rfr_iscdi=true