A modified ARIMA model for forecasting chemical sales in the USA

model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-05, Vol.1879 (3), p.32008
Hauptverfasser: Salah, Othman Mahdi, Mahdi, Ghadeer Jasim Mohammed, Al-Latif, Iman Ahmed Abud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 32008
container_title Journal of physics. Conference series
container_volume 1879
creator Salah, Othman Mahdi
Mahdi, Ghadeer Jasim Mohammed
Al-Latif, Iman Ahmed Abud
description model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales for the next three years for chemical sales in the USA is provided.
doi_str_mv 10.1088/1742-6596/1879/3/032008
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2535634517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535634517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3718-733419ed3f8b0f9a13bc758f121b0afd2c26dc6bc3c73db090df1b8e4167b5053</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsFafwQXvhJjdTJLd3BmKh0pFsfZ62aPdkjYx21749iZGKoLgwDAzzP_PwIfQOSVXlHAeU5YmUZ4VeUw5K2KICSSE8AM02m8O9z3nx-gkhBUh0AUboesSr2vjnbcGly_Tx6_RVtjVbZ9Wy7D1mzesl3bttaxwkJUN2G_wdmnxYl6eoiMnq2DPvusYLW5vXif30ezpbjopZ5EGRnnEAFJaWAOOK-IKSUFplnFHE6qIdCbRSW50rjRoBkaRghhHFbcpzZnKSAZjdDHcbdr6fWfDVqzqXbvpXookgyyHNKOsU7FBpds6hNY60bR-LdsPQYnocYkehOihiB6XADHg6pwwOH3d_Jz-33X5h-vheTL_LRSNcfAJINV3zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535634517</pqid></control><display><type>article</type><title>A modified ARIMA model for forecasting chemical sales in the USA</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Salah, Othman Mahdi ; Mahdi, Ghadeer Jasim Mohammed ; Al-Latif, Iman Ahmed Abud</creator><creatorcontrib>Salah, Othman Mahdi ; Mahdi, Ghadeer Jasim Mohammed ; Al-Latif, Iman Ahmed Abud</creatorcontrib><description>model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales for the next three years for chemical sales in the USA is provided.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1879/3/032008</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Autoregressive models ; Criteria ; Data analysis ; Datasets ; Forecasting ; Physics ; Sales</subject><ispartof>Journal of physics. Conference series, 2021-05, Vol.1879 (3), p.32008</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3718-733419ed3f8b0f9a13bc758f121b0afd2c26dc6bc3c73db090df1b8e4167b5053</citedby><cites>FETCH-LOGICAL-c3718-733419ed3f8b0f9a13bc758f121b0afd2c26dc6bc3c73db090df1b8e4167b5053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1879/3/032008/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Salah, Othman Mahdi</creatorcontrib><creatorcontrib>Mahdi, Ghadeer Jasim Mohammed</creatorcontrib><creatorcontrib>Al-Latif, Iman Ahmed Abud</creatorcontrib><title>A modified ARIMA model for forecasting chemical sales in the USA</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales for the next three years for chemical sales in the USA is provided.</description><subject>Algorithms</subject><subject>Autoregressive models</subject><subject>Criteria</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Forecasting</subject><subject>Physics</subject><subject>Sales</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkNtKw0AQhhdRsFafwQXvhJjdTJLd3BmKh0pFsfZ62aPdkjYx21749iZGKoLgwDAzzP_PwIfQOSVXlHAeU5YmUZ4VeUw5K2KICSSE8AM02m8O9z3nx-gkhBUh0AUboesSr2vjnbcGly_Tx6_RVtjVbZ9Wy7D1mzesl3bttaxwkJUN2G_wdmnxYl6eoiMnq2DPvusYLW5vXif30ezpbjopZ5EGRnnEAFJaWAOOK-IKSUFplnFHE6qIdCbRSW50rjRoBkaRghhHFbcpzZnKSAZjdDHcbdr6fWfDVqzqXbvpXookgyyHNKOsU7FBpds6hNY60bR-LdsPQYnocYkehOihiB6XADHg6pwwOH3d_Jz-33X5h-vheTL_LRSNcfAJINV3zw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Salah, Othman Mahdi</creator><creator>Mahdi, Ghadeer Jasim Mohammed</creator><creator>Al-Latif, Iman Ahmed Abud</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210501</creationdate><title>A modified ARIMA model for forecasting chemical sales in the USA</title><author>Salah, Othman Mahdi ; Mahdi, Ghadeer Jasim Mohammed ; Al-Latif, Iman Ahmed Abud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3718-733419ed3f8b0f9a13bc758f121b0afd2c26dc6bc3c73db090df1b8e4167b5053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autoregressive models</topic><topic>Criteria</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Forecasting</topic><topic>Physics</topic><topic>Sales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salah, Othman Mahdi</creatorcontrib><creatorcontrib>Mahdi, Ghadeer Jasim Mohammed</creatorcontrib><creatorcontrib>Al-Latif, Iman Ahmed Abud</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salah, Othman Mahdi</au><au>Mahdi, Ghadeer Jasim Mohammed</au><au>Al-Latif, Iman Ahmed Abud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified ARIMA model for forecasting chemical sales in the USA</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>1879</volume><issue>3</issue><spage>32008</spage><pages>32008-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales for the next three years for chemical sales in the USA is provided.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1879/3/032008</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-05, Vol.1879 (3), p.32008
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2535634517
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Autoregressive models
Criteria
Data analysis
Datasets
Forecasting
Physics
Sales
title A modified ARIMA model for forecasting chemical sales in the USA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20ARIMA%20model%20for%20forecasting%20chemical%20sales%20in%20the%20USA&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Salah,%20Othman%20Mahdi&rft.date=2021-05-01&rft.volume=1879&rft.issue=3&rft.spage=32008&rft.pages=32008-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1879/3/032008&rft_dat=%3Cproquest_iop_j%3E2535634517%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535634517&rft_id=info:pmid/&rfr_iscdi=true