A modified ARIMA model for forecasting chemical sales in the USA
model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in d...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-05, Vol.1879 (3), p.32008 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 32008 |
container_title | Journal of physics. Conference series |
container_volume | 1879 |
creator | Salah, Othman Mahdi Mahdi, Ghadeer Jasim Mohammed Al-Latif, Iman Ahmed Abud |
description | model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales for the next three years for chemical sales in the USA is provided. |
doi_str_mv | 10.1088/1742-6596/1879/3/032008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2535634517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535634517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3718-733419ed3f8b0f9a13bc758f121b0afd2c26dc6bc3c73db090df1b8e4167b5053</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsFafwQXvhJjdTJLd3BmKh0pFsfZ62aPdkjYx21749iZGKoLgwDAzzP_PwIfQOSVXlHAeU5YmUZ4VeUw5K2KICSSE8AM02m8O9z3nx-gkhBUh0AUboesSr2vjnbcGly_Tx6_RVtjVbZ9Wy7D1mzesl3bttaxwkJUN2G_wdmnxYl6eoiMnq2DPvusYLW5vXif30ezpbjopZ5EGRnnEAFJaWAOOK-IKSUFplnFHE6qIdCbRSW50rjRoBkaRghhHFbcpzZnKSAZjdDHcbdr6fWfDVqzqXbvpXookgyyHNKOsU7FBpds6hNY60bR-LdsPQYnocYkehOihiB6XADHg6pwwOH3d_Jz-33X5h-vheTL_LRSNcfAJINV3zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535634517</pqid></control><display><type>article</type><title>A modified ARIMA model for forecasting chemical sales in the USA</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Salah, Othman Mahdi ; Mahdi, Ghadeer Jasim Mohammed ; Al-Latif, Iman Ahmed Abud</creator><creatorcontrib>Salah, Othman Mahdi ; Mahdi, Ghadeer Jasim Mohammed ; Al-Latif, Iman Ahmed Abud</creatorcontrib><description>model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales for the next three years for chemical sales in the USA is provided.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1879/3/032008</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Autoregressive models ; Criteria ; Data analysis ; Datasets ; Forecasting ; Physics ; Sales</subject><ispartof>Journal of physics. Conference series, 2021-05, Vol.1879 (3), p.32008</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3718-733419ed3f8b0f9a13bc758f121b0afd2c26dc6bc3c73db090df1b8e4167b5053</citedby><cites>FETCH-LOGICAL-c3718-733419ed3f8b0f9a13bc758f121b0afd2c26dc6bc3c73db090df1b8e4167b5053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1879/3/032008/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Salah, Othman Mahdi</creatorcontrib><creatorcontrib>Mahdi, Ghadeer Jasim Mohammed</creatorcontrib><creatorcontrib>Al-Latif, Iman Ahmed Abud</creatorcontrib><title>A modified ARIMA model for forecasting chemical sales in the USA</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales for the next three years for chemical sales in the USA is provided.</description><subject>Algorithms</subject><subject>Autoregressive models</subject><subject>Criteria</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Forecasting</subject><subject>Physics</subject><subject>Sales</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkNtKw0AQhhdRsFafwQXvhJjdTJLd3BmKh0pFsfZ62aPdkjYx21749iZGKoLgwDAzzP_PwIfQOSVXlHAeU5YmUZ4VeUw5K2KICSSE8AM02m8O9z3nx-gkhBUh0AUboesSr2vjnbcGly_Tx6_RVtjVbZ9Wy7D1mzesl3bttaxwkJUN2G_wdmnxYl6eoiMnq2DPvusYLW5vXif30ezpbjopZ5EGRnnEAFJaWAOOK-IKSUFplnFHE6qIdCbRSW50rjRoBkaRghhHFbcpzZnKSAZjdDHcbdr6fWfDVqzqXbvpXookgyyHNKOsU7FBpds6hNY60bR-LdsPQYnocYkehOihiB6XADHg6pwwOH3d_Jz-33X5h-vheTL_LRSNcfAJINV3zw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Salah, Othman Mahdi</creator><creator>Mahdi, Ghadeer Jasim Mohammed</creator><creator>Al-Latif, Iman Ahmed Abud</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210501</creationdate><title>A modified ARIMA model for forecasting chemical sales in the USA</title><author>Salah, Othman Mahdi ; Mahdi, Ghadeer Jasim Mohammed ; Al-Latif, Iman Ahmed Abud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3718-733419ed3f8b0f9a13bc758f121b0afd2c26dc6bc3c73db090df1b8e4167b5053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autoregressive models</topic><topic>Criteria</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Forecasting</topic><topic>Physics</topic><topic>Sales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salah, Othman Mahdi</creatorcontrib><creatorcontrib>Mahdi, Ghadeer Jasim Mohammed</creatorcontrib><creatorcontrib>Al-Latif, Iman Ahmed Abud</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salah, Othman Mahdi</au><au>Mahdi, Ghadeer Jasim Mohammed</au><au>Al-Latif, Iman Ahmed Abud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified ARIMA model for forecasting chemical sales in the USA</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>1879</volume><issue>3</issue><spage>32008</spage><pages>32008-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales for the next three years for chemical sales in the USA is provided.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1879/3/032008</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-05, Vol.1879 (3), p.32008 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2535634517 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Autoregressive models Criteria Data analysis Datasets Forecasting Physics Sales |
title | A modified ARIMA model for forecasting chemical sales in the USA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20ARIMA%20model%20for%20forecasting%20chemical%20sales%20in%20the%20USA&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Salah,%20Othman%20Mahdi&rft.date=2021-05-01&rft.volume=1879&rft.issue=3&rft.spage=32008&rft.pages=32008-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1879/3/032008&rft_dat=%3Cproquest_iop_j%3E2535634517%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535634517&rft_id=info:pmid/&rfr_iscdi=true |