Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model

The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-05, Vol.1909 (1), p.12029
Hauptverfasser: Apollonio, A, Anderlini, A, Valentini, D, Pace, G, Pasini, A, Salvetti, M V, D’Agostino, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12029
container_title Journal of physics. Conference series
container_volume 1909
creator Apollonio, A
Anderlini, A
Valentini, D
Pace, G
Pasini, A
Salvetti, M V
D’Agostino, L
description The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most significant predictions of the model are compared with the experimentally validated URANS (Unsteady Reynolds-Averaged Navier-Stokes) simulations of the non-cavitating flow through a typical six-bladed unshrouded mixed-flow turbopump for liquid propellant rocket engines operating at both design and off-design flow conditions and different values of the impeller clearance. The observed discrepancies can be explained in terms of the simplifying assumptions introduced for the development of the model and their relative magnitude (< ±10%) does not adversely interfere with the accurate prediction of the turbopump performance over a wide range of operating conditions above and below design flow rate. Together with earlier experimental validations, the results dramatically confirm the capability of the proposed model to generate useful engineering solutions of the turbopump preliminary design problem at a negligible fraction of the computational cost required by 3D numerical simulations.
doi_str_mv 10.1088/1742-6596/1909/1/012029
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2535626373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535626373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2749-586dd28248077e9c2a9960a79e9eb922b662f0fe34e2deab34ff8a9ed800bd053</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhosouK7-BgPehNo0aZvE21K_UVfc1WtIm6l0aZuatIf997ZUVgTBuczAvM8MPJ53GuKLEHMehCwifhKLJAgFFkEY4JBgIva82W6zv5s5P_SOnNtgTIdiM0-te5uZtq9bdAWu_GguUWrqVtnSmQaZAj33NdgyVxValXVfqa40jUOdQapBi8qC0lv0rqpSqw40egXd56D9pdVg0ZPRUB17B4WqHJx897n3dnO9Tu_8x-Xtfbp49HPCIuHHPNGacBJxzBiInCghEqyYAAGZICRLElLgAmgERIPKaFQUXAnQHONM45jOvbPpbmvNZw-ukxvT22Z4KUlM44QklNEhxaZUbo1zFgrZ2rJWditDLEefcjQlR2ty9ClDOfkcSDqRpWl_Tv9Pnf9BPbykq99B2eqCfgGMgYUt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535626373</pqid></control><display><type>article</type><title>Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Apollonio, A ; Anderlini, A ; Valentini, D ; Pace, G ; Pasini, A ; Salvetti, M V ; D’Agostino, L</creator><creatorcontrib>Apollonio, A ; Anderlini, A ; Valentini, D ; Pace, G ; Pasini, A ; Salvetti, M V ; D’Agostino, L</creatorcontrib><description>The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most significant predictions of the model are compared with the experimentally validated URANS (Unsteady Reynolds-Averaged Navier-Stokes) simulations of the non-cavitating flow through a typical six-bladed unshrouded mixed-flow turbopump for liquid propellant rocket engines operating at both design and off-design flow conditions and different values of the impeller clearance. The observed discrepancies can be explained in terms of the simplifying assumptions introduced for the development of the model and their relative magnitude (&lt; ±10%) does not adversely interfere with the accurate prediction of the turbopump performance over a wide range of operating conditions above and below design flow rate. Together with earlier experimental validations, the results dramatically confirm the capability of the proposed model to generate useful engineering solutions of the turbopump preliminary design problem at a negligible fraction of the computational cost required by 3D numerical simulations.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1909/1/012029</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computational fluid dynamics ; Design optimization ; Flow velocity ; Impellers ; Liquid propellant rocket engines ; Liquid propellants ; Mathematical models ; Performance evaluation ; Physics ; Preliminary designs ; Reduced order models ; Reynolds averaged Navier-Stokes method ; Simulation ; Turbine pumps</subject><ispartof>Journal of physics. Conference series, 2021-05, Vol.1909 (1), p.12029</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2749-586dd28248077e9c2a9960a79e9eb922b662f0fe34e2deab34ff8a9ed800bd053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1909/1/012029/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Apollonio, A</creatorcontrib><creatorcontrib>Anderlini, A</creatorcontrib><creatorcontrib>Valentini, D</creatorcontrib><creatorcontrib>Pace, G</creatorcontrib><creatorcontrib>Pasini, A</creatorcontrib><creatorcontrib>Salvetti, M V</creatorcontrib><creatorcontrib>D’Agostino, L</creatorcontrib><title>Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most significant predictions of the model are compared with the experimentally validated URANS (Unsteady Reynolds-Averaged Navier-Stokes) simulations of the non-cavitating flow through a typical six-bladed unshrouded mixed-flow turbopump for liquid propellant rocket engines operating at both design and off-design flow conditions and different values of the impeller clearance. The observed discrepancies can be explained in terms of the simplifying assumptions introduced for the development of the model and their relative magnitude (&lt; ±10%) does not adversely interfere with the accurate prediction of the turbopump performance over a wide range of operating conditions above and below design flow rate. Together with earlier experimental validations, the results dramatically confirm the capability of the proposed model to generate useful engineering solutions of the turbopump preliminary design problem at a negligible fraction of the computational cost required by 3D numerical simulations.</description><subject>Computational fluid dynamics</subject><subject>Design optimization</subject><subject>Flow velocity</subject><subject>Impellers</subject><subject>Liquid propellant rocket engines</subject><subject>Liquid propellants</subject><subject>Mathematical models</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Preliminary designs</subject><subject>Reduced order models</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Simulation</subject><subject>Turbine pumps</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LxDAQhosouK7-BgPehNo0aZvE21K_UVfc1WtIm6l0aZuatIf997ZUVgTBuczAvM8MPJ53GuKLEHMehCwifhKLJAgFFkEY4JBgIva82W6zv5s5P_SOnNtgTIdiM0-te5uZtq9bdAWu_GguUWrqVtnSmQaZAj33NdgyVxValXVfqa40jUOdQapBi8qC0lv0rqpSqw40egXd56D9pdVg0ZPRUB17B4WqHJx897n3dnO9Tu_8x-Xtfbp49HPCIuHHPNGacBJxzBiInCghEqyYAAGZICRLElLgAmgERIPKaFQUXAnQHONM45jOvbPpbmvNZw-ukxvT22Z4KUlM44QklNEhxaZUbo1zFgrZ2rJWditDLEefcjQlR2ty9ClDOfkcSDqRpWl_Tv9Pnf9BPbykq99B2eqCfgGMgYUt</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Apollonio, A</creator><creator>Anderlini, A</creator><creator>Valentini, D</creator><creator>Pace, G</creator><creator>Pasini, A</creator><creator>Salvetti, M V</creator><creator>D’Agostino, L</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210501</creationdate><title>Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model</title><author>Apollonio, A ; Anderlini, A ; Valentini, D ; Pace, G ; Pasini, A ; Salvetti, M V ; D’Agostino, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2749-586dd28248077e9c2a9960a79e9eb922b662f0fe34e2deab34ff8a9ed800bd053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Design optimization</topic><topic>Flow velocity</topic><topic>Impellers</topic><topic>Liquid propellant rocket engines</topic><topic>Liquid propellants</topic><topic>Mathematical models</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Preliminary designs</topic><topic>Reduced order models</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Simulation</topic><topic>Turbine pumps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apollonio, A</creatorcontrib><creatorcontrib>Anderlini, A</creatorcontrib><creatorcontrib>Valentini, D</creatorcontrib><creatorcontrib>Pace, G</creatorcontrib><creatorcontrib>Pasini, A</creatorcontrib><creatorcontrib>Salvetti, M V</creatorcontrib><creatorcontrib>D’Agostino, L</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apollonio, A</au><au>Anderlini, A</au><au>Valentini, D</au><au>Pace, G</au><au>Pasini, A</au><au>Salvetti, M V</au><au>D’Agostino, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>1909</volume><issue>1</issue><spage>12029</spage><pages>12029-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most significant predictions of the model are compared with the experimentally validated URANS (Unsteady Reynolds-Averaged Navier-Stokes) simulations of the non-cavitating flow through a typical six-bladed unshrouded mixed-flow turbopump for liquid propellant rocket engines operating at both design and off-design flow conditions and different values of the impeller clearance. The observed discrepancies can be explained in terms of the simplifying assumptions introduced for the development of the model and their relative magnitude (&lt; ±10%) does not adversely interfere with the accurate prediction of the turbopump performance over a wide range of operating conditions above and below design flow rate. Together with earlier experimental validations, the results dramatically confirm the capability of the proposed model to generate useful engineering solutions of the turbopump preliminary design problem at a negligible fraction of the computational cost required by 3D numerical simulations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1909/1/012029</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-05, Vol.1909 (1), p.12029
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2535626373
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Computational fluid dynamics
Design optimization
Flow velocity
Impellers
Liquid propellant rocket engines
Liquid propellants
Mathematical models
Performance evaluation
Physics
Preliminary designs
Reduced order models
Reynolds averaged Navier-Stokes method
Simulation
Turbine pumps
title Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbopump%20Design:%20Comparison%20of%20Numerical%20Simulations%20to%20an%20Already%20Validated%20Reduced-Order%20Model&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Apollonio,%20A&rft.date=2021-05-01&rft.volume=1909&rft.issue=1&rft.spage=12029&rft.pages=12029-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1909/1/012029&rft_dat=%3Cproquest_iop_j%3E2535626373%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535626373&rft_id=info:pmid/&rfr_iscdi=true