Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model
The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most sign...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-05, Vol.1909 (1), p.12029 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12029 |
container_title | Journal of physics. Conference series |
container_volume | 1909 |
creator | Apollonio, A Anderlini, A Valentini, D Pace, G Pasini, A Salvetti, M V D’Agostino, L |
description | The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most significant predictions of the model are compared with the experimentally validated URANS (Unsteady Reynolds-Averaged Navier-Stokes) simulations of the non-cavitating flow through a typical six-bladed unshrouded mixed-flow turbopump for liquid propellant rocket engines operating at both design and off-design flow conditions and different values of the impeller clearance. The observed discrepancies can be explained in terms of the simplifying assumptions introduced for the development of the model and their relative magnitude (< ±10%) does not adversely interfere with the accurate prediction of the turbopump performance over a wide range of operating conditions above and below design flow rate. Together with earlier experimental validations, the results dramatically confirm the capability of the proposed model to generate useful engineering solutions of the turbopump preliminary design problem at a negligible fraction of the computational cost required by 3D numerical simulations. |
doi_str_mv | 10.1088/1742-6596/1909/1/012029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2535626373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535626373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2749-586dd28248077e9c2a9960a79e9eb922b662f0fe34e2deab34ff8a9ed800bd053</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhosouK7-BgPehNo0aZvE21K_UVfc1WtIm6l0aZuatIf997ZUVgTBuczAvM8MPJ53GuKLEHMehCwifhKLJAgFFkEY4JBgIva82W6zv5s5P_SOnNtgTIdiM0-te5uZtq9bdAWu_GguUWrqVtnSmQaZAj33NdgyVxValXVfqa40jUOdQapBi8qC0lv0rqpSqw40egXd56D9pdVg0ZPRUB17B4WqHJx897n3dnO9Tu_8x-Xtfbp49HPCIuHHPNGacBJxzBiInCghEqyYAAGZICRLElLgAmgERIPKaFQUXAnQHONM45jOvbPpbmvNZw-ukxvT22Z4KUlM44QklNEhxaZUbo1zFgrZ2rJWditDLEefcjQlR2ty9ClDOfkcSDqRpWl_Tv9Pnf9BPbykq99B2eqCfgGMgYUt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535626373</pqid></control><display><type>article</type><title>Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Apollonio, A ; Anderlini, A ; Valentini, D ; Pace, G ; Pasini, A ; Salvetti, M V ; D’Agostino, L</creator><creatorcontrib>Apollonio, A ; Anderlini, A ; Valentini, D ; Pace, G ; Pasini, A ; Salvetti, M V ; D’Agostino, L</creatorcontrib><description>The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most significant predictions of the model are compared with the experimentally validated URANS (Unsteady Reynolds-Averaged Navier-Stokes) simulations of the non-cavitating flow through a typical six-bladed unshrouded mixed-flow turbopump for liquid propellant rocket engines operating at both design and off-design flow conditions and different values of the impeller clearance. The observed discrepancies can be explained in terms of the simplifying assumptions introduced for the development of the model and their relative magnitude (< ±10%) does not adversely interfere with the accurate prediction of the turbopump performance over a wide range of operating conditions above and below design flow rate. Together with earlier experimental validations, the results dramatically confirm the capability of the proposed model to generate useful engineering solutions of the turbopump preliminary design problem at a negligible fraction of the computational cost required by 3D numerical simulations.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1909/1/012029</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computational fluid dynamics ; Design optimization ; Flow velocity ; Impellers ; Liquid propellant rocket engines ; Liquid propellants ; Mathematical models ; Performance evaluation ; Physics ; Preliminary designs ; Reduced order models ; Reynolds averaged Navier-Stokes method ; Simulation ; Turbine pumps</subject><ispartof>Journal of physics. Conference series, 2021-05, Vol.1909 (1), p.12029</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2749-586dd28248077e9c2a9960a79e9eb922b662f0fe34e2deab34ff8a9ed800bd053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1909/1/012029/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Apollonio, A</creatorcontrib><creatorcontrib>Anderlini, A</creatorcontrib><creatorcontrib>Valentini, D</creatorcontrib><creatorcontrib>Pace, G</creatorcontrib><creatorcontrib>Pasini, A</creatorcontrib><creatorcontrib>Salvetti, M V</creatorcontrib><creatorcontrib>D’Agostino, L</creatorcontrib><title>Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most significant predictions of the model are compared with the experimentally validated URANS (Unsteady Reynolds-Averaged Navier-Stokes) simulations of the non-cavitating flow through a typical six-bladed unshrouded mixed-flow turbopump for liquid propellant rocket engines operating at both design and off-design flow conditions and different values of the impeller clearance. The observed discrepancies can be explained in terms of the simplifying assumptions introduced for the development of the model and their relative magnitude (< ±10%) does not adversely interfere with the accurate prediction of the turbopump performance over a wide range of operating conditions above and below design flow rate. Together with earlier experimental validations, the results dramatically confirm the capability of the proposed model to generate useful engineering solutions of the turbopump preliminary design problem at a negligible fraction of the computational cost required by 3D numerical simulations.</description><subject>Computational fluid dynamics</subject><subject>Design optimization</subject><subject>Flow velocity</subject><subject>Impellers</subject><subject>Liquid propellant rocket engines</subject><subject>Liquid propellants</subject><subject>Mathematical models</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Preliminary designs</subject><subject>Reduced order models</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Simulation</subject><subject>Turbine pumps</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LxDAQhosouK7-BgPehNo0aZvE21K_UVfc1WtIm6l0aZuatIf997ZUVgTBuczAvM8MPJ53GuKLEHMehCwifhKLJAgFFkEY4JBgIva82W6zv5s5P_SOnNtgTIdiM0-te5uZtq9bdAWu_GguUWrqVtnSmQaZAj33NdgyVxValXVfqa40jUOdQapBi8qC0lv0rqpSqw40egXd56D9pdVg0ZPRUB17B4WqHJx897n3dnO9Tu_8x-Xtfbp49HPCIuHHPNGacBJxzBiInCghEqyYAAGZICRLElLgAmgERIPKaFQUXAnQHONM45jOvbPpbmvNZw-ukxvT22Z4KUlM44QklNEhxaZUbo1zFgrZ2rJWditDLEefcjQlR2ty9ClDOfkcSDqRpWl_Tv9Pnf9BPbykq99B2eqCfgGMgYUt</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Apollonio, A</creator><creator>Anderlini, A</creator><creator>Valentini, D</creator><creator>Pace, G</creator><creator>Pasini, A</creator><creator>Salvetti, M V</creator><creator>D’Agostino, L</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210501</creationdate><title>Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model</title><author>Apollonio, A ; Anderlini, A ; Valentini, D ; Pace, G ; Pasini, A ; Salvetti, M V ; D’Agostino, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2749-586dd28248077e9c2a9960a79e9eb922b662f0fe34e2deab34ff8a9ed800bd053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Design optimization</topic><topic>Flow velocity</topic><topic>Impellers</topic><topic>Liquid propellant rocket engines</topic><topic>Liquid propellants</topic><topic>Mathematical models</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Preliminary designs</topic><topic>Reduced order models</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Simulation</topic><topic>Turbine pumps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apollonio, A</creatorcontrib><creatorcontrib>Anderlini, A</creatorcontrib><creatorcontrib>Valentini, D</creatorcontrib><creatorcontrib>Pace, G</creatorcontrib><creatorcontrib>Pasini, A</creatorcontrib><creatorcontrib>Salvetti, M V</creatorcontrib><creatorcontrib>D’Agostino, L</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apollonio, A</au><au>Anderlini, A</au><au>Valentini, D</au><au>Pace, G</au><au>Pasini, A</au><au>Salvetti, M V</au><au>D’Agostino, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>1909</volume><issue>1</issue><spage>12029</spage><pages>12029-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most significant predictions of the model are compared with the experimentally validated URANS (Unsteady Reynolds-Averaged Navier-Stokes) simulations of the non-cavitating flow through a typical six-bladed unshrouded mixed-flow turbopump for liquid propellant rocket engines operating at both design and off-design flow conditions and different values of the impeller clearance. The observed discrepancies can be explained in terms of the simplifying assumptions introduced for the development of the model and their relative magnitude (< ±10%) does not adversely interfere with the accurate prediction of the turbopump performance over a wide range of operating conditions above and below design flow rate. Together with earlier experimental validations, the results dramatically confirm the capability of the proposed model to generate useful engineering solutions of the turbopump preliminary design problem at a negligible fraction of the computational cost required by 3D numerical simulations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1909/1/012029</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-05, Vol.1909 (1), p.12029 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2535626373 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Computational fluid dynamics Design optimization Flow velocity Impellers Liquid propellant rocket engines Liquid propellants Mathematical models Performance evaluation Physics Preliminary designs Reduced order models Reynolds averaged Navier-Stokes method Simulation Turbine pumps |
title | Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbopump%20Design:%20Comparison%20of%20Numerical%20Simulations%20to%20an%20Already%20Validated%20Reduced-Order%20Model&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Apollonio,%20A&rft.date=2021-05-01&rft.volume=1909&rft.issue=1&rft.spage=12029&rft.pages=12029-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1909/1/012029&rft_dat=%3Cproquest_iop_j%3E2535626373%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535626373&rft_id=info:pmid/&rfr_iscdi=true |