Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern Qiangtang of Tibet, western China: Implications for the evolution of the Bangong Co‐Nujiang Meso‐Tethyan Ocean
We present in‐situ zircon laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U–Pb ages, whole‐rock geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern margin of the Qiangtang Block, Tibet, western China. The zircons yield a U–Pb age of ca. 123 M...
Gespeichert in:
Veröffentlicht in: | Geological journal (Chichester, England) England), 2021-06, Vol.56 (6), p.3170-3186 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3186 |
---|---|
container_issue | 6 |
container_start_page | 3170 |
container_title | Geological journal (Chichester, England) |
container_volume | 56 |
creator | Huang, Han‐Xiao Dai, Zuo‐Wen Liu, Hong Li, Guang‐Ming Huizenga, Jan Marten Zhang, Lin‐Kui Huang, Yong Cao, Hua‐Wen Fu, Jian‐Gang |
description | We present in‐situ zircon laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U–Pb ages, whole‐rock geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern margin of the Qiangtang Block, Tibet, western China. The zircons yield a U–Pb age of ca. 123 Ma. The hornblende‐bearing monzogranite shows metaluminous to weak peraluminous and high‐K calc‐alkaline characteristics exemplified by high silica (SiO2 = 67.57–70.57 wt%), high aluminium (Al2O3 = 14.68–15.78 wt%), high potassium (K2O = 4.00–5.14 wt%), high alkali (K2O + Na2O = 7.88–8.62 wt%), and low calcium contents (CaO = 1.72–2.17 wt%), with the aluminium saturation index (A/CNK) ranging from 0.98 to 1.09, suggesting that the Mugagangri monzogranite is a metaluminous to weak peraluminous I‐type high‐K calc‐alkaline granite. Geochemically, similar to the arc magmas, the monzogranite is enriched in large‐ion lithophile elements, and relatively depleted in high‐field‐strength elements. The monzogranite displays relatively high (87Sr/86Sr)i values (0.70972–0.71240), uniform εNd(t) values (−2.24 to −3.40), variable zircon εHf(t) values (−14.1 to +8.0), and high radiogenic Pb isotopic values (206Pb/204Pb = 18.588–18.790, 207Pb/204Pb = 15.616–15.642, and 208Pb/204Pb = 38.838–39.053). These geochemical characteristics indicate that the monzogranite was derived from a mixed source comprising ancient crustal and mantle materials, and experienced fractional crystallization during emplacement. We propose that the parental magma of the Mugagangri monzogranite was most likely generated during northward subduction of the Bangong Co‐Nujiang Meso‐Tethys Ocean.
At ca. 120 Ma, the mantle wedge partially melted due to metasomatism of subduction‐derived fluids and generated basaltic melts, which resulted in partial melting of crust and generation of felsic melts. Mantle‐derived basaltic magmas and crust‐derived felsic magmas mixed in deep‐seated magma chamber and formed mixed magmas. These mixed magmas experienced pronounced fractional crystallization in the magma chamber or during ascend, and then formed a series of medium‐acidic intrusive rocks represented by the Mugagangri monzogranite. |
doi_str_mv | 10.1002/gj.4094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535626270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535626270</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3124-c556c6ea391e2df3a0e1a87e16cd4ad393a5bfa4736a835a0bf9def1d5dcea133</originalsourceid><addsrcrecordid>eNp1kU1u2zAQhYmiBeqmRa8wQBddxE5JUZKj7BKj-UN-WtTZdCOMpaFMwSZdkkrgrHKEALmhT1LKTpddkEPyffMeiGHss-AHgvPkW9MepLxI37CB4EUxElymb9mA83ESzxl_zz5433IuBE_FgG1-a1dZA3ebp5cfM8CG_BAastWcltoHtx4Cmhp-uajf1FsobucKtLfBrsiDVRDmBNddgw2axmlYWvNoG4dGBwJttrK3XSzOwE8doRBX3zjVMwpDeCAfem0y1waP4GK5WugKg7bGg7Jua0D3dtH1T_8CT6KHjTYTu3l6vuna3heuyffXKYX5Gg3cVoTmI3uncOHp02vdY3en36eT89HV7dnF5PhqhFIk6ajKsrzKCWUhKKmVRE4CD8ck8qpOsZaFxGymMB3LHA9lhnymipqUqLM6pggp99iXne_K2T9d_FLZ2s6ZGFkmmczyJE_GPFJfd1TlrPeOVLlyeoluXQpe9gMsm7bsBxjJ_R35oBe0_h9Wnl1u6b9ub6VK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535626270</pqid></control><display><type>article</type><title>Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern Qiangtang of Tibet, western China: Implications for the evolution of the Bangong Co‐Nujiang Meso‐Tethyan Ocean</title><source>Wiley Online Library All Journals</source><creator>Huang, Han‐Xiao ; Dai, Zuo‐Wen ; Liu, Hong ; Li, Guang‐Ming ; Huizenga, Jan Marten ; Zhang, Lin‐Kui ; Huang, Yong ; Cao, Hua‐Wen ; Fu, Jian‐Gang</creator><creatorcontrib>Huang, Han‐Xiao ; Dai, Zuo‐Wen ; Liu, Hong ; Li, Guang‐Ming ; Huizenga, Jan Marten ; Zhang, Lin‐Kui ; Huang, Yong ; Cao, Hua‐Wen ; Fu, Jian‐Gang</creatorcontrib><description>We present in‐situ zircon laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U–Pb ages, whole‐rock geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern margin of the Qiangtang Block, Tibet, western China. The zircons yield a U–Pb age of ca. 123 Ma. The hornblende‐bearing monzogranite shows metaluminous to weak peraluminous and high‐K calc‐alkaline characteristics exemplified by high silica (SiO2 = 67.57–70.57 wt%), high aluminium (Al2O3 = 14.68–15.78 wt%), high potassium (K2O = 4.00–5.14 wt%), high alkali (K2O + Na2O = 7.88–8.62 wt%), and low calcium contents (CaO = 1.72–2.17 wt%), with the aluminium saturation index (A/CNK) ranging from 0.98 to 1.09, suggesting that the Mugagangri monzogranite is a metaluminous to weak peraluminous I‐type high‐K calc‐alkaline granite. Geochemically, similar to the arc magmas, the monzogranite is enriched in large‐ion lithophile elements, and relatively depleted in high‐field‐strength elements. The monzogranite displays relatively high (87Sr/86Sr)i values (0.70972–0.71240), uniform εNd(t) values (−2.24 to −3.40), variable zircon εHf(t) values (−14.1 to +8.0), and high radiogenic Pb isotopic values (206Pb/204Pb = 18.588–18.790, 207Pb/204Pb = 15.616–15.642, and 208Pb/204Pb = 38.838–39.053). These geochemical characteristics indicate that the monzogranite was derived from a mixed source comprising ancient crustal and mantle materials, and experienced fractional crystallization during emplacement. We propose that the parental magma of the Mugagangri monzogranite was most likely generated during northward subduction of the Bangong Co‐Nujiang Meso‐Tethys Ocean.
At ca. 120 Ma, the mantle wedge partially melted due to metasomatism of subduction‐derived fluids and generated basaltic melts, which resulted in partial melting of crust and generation of felsic melts. Mantle‐derived basaltic magmas and crust‐derived felsic magmas mixed in deep‐seated magma chamber and formed mixed magmas. These mixed magmas experienced pronounced fractional crystallization in the magma chamber or during ascend, and then formed a series of medium‐acidic intrusive rocks represented by the Mugagangri monzogranite.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.4094</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Ablation ; Aluminium ; Aluminum ; Aluminum oxide ; Bangong Co‐Nujiang Suture Zone ; Calcium ; Crystallization ; Fractional crystallization ; Geochemistry ; Inductively coupled plasma mass spectrometry ; Isotopes ; I‐type granite ; Laser ablation ; Lasers ; Lava ; Lead ; Lead isotopes ; Magma ; Mass spectrometry ; Mass spectroscopy ; Paleoceanography ; Potassium ; Potassium oxides ; Qiangtang ; Radiometric dating ; Saturation ; Saturation index ; Silica ; Silicon dioxide ; Sr–Nd–Pb–Hf isotopes ; Strontium ; Strontium 87 ; Strontium isotopes ; Subduction ; Tibet ; Zircon ; zircon U–Pb</subject><ispartof>Geological journal (Chichester, England), 2021-06, Vol.56 (6), p.3170-3186</ispartof><rights>2021 John Wiley & Sons Ltd</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3124-c556c6ea391e2df3a0e1a87e16cd4ad393a5bfa4736a835a0bf9def1d5dcea133</citedby><cites>FETCH-LOGICAL-a3124-c556c6ea391e2df3a0e1a87e16cd4ad393a5bfa4736a835a0bf9def1d5dcea133</cites><orcidid>0000-0003-3254-702X ; 0000-0002-3703-5843 ; 0000-0003-4939-3493 ; 0000-0002-9231-241X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgj.4094$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgj.4094$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Huang, Han‐Xiao</creatorcontrib><creatorcontrib>Dai, Zuo‐Wen</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Li, Guang‐Ming</creatorcontrib><creatorcontrib>Huizenga, Jan Marten</creatorcontrib><creatorcontrib>Zhang, Lin‐Kui</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Cao, Hua‐Wen</creatorcontrib><creatorcontrib>Fu, Jian‐Gang</creatorcontrib><title>Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern Qiangtang of Tibet, western China: Implications for the evolution of the Bangong Co‐Nujiang Meso‐Tethyan Ocean</title><title>Geological journal (Chichester, England)</title><description>We present in‐situ zircon laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U–Pb ages, whole‐rock geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern margin of the Qiangtang Block, Tibet, western China. The zircons yield a U–Pb age of ca. 123 Ma. The hornblende‐bearing monzogranite shows metaluminous to weak peraluminous and high‐K calc‐alkaline characteristics exemplified by high silica (SiO2 = 67.57–70.57 wt%), high aluminium (Al2O3 = 14.68–15.78 wt%), high potassium (K2O = 4.00–5.14 wt%), high alkali (K2O + Na2O = 7.88–8.62 wt%), and low calcium contents (CaO = 1.72–2.17 wt%), with the aluminium saturation index (A/CNK) ranging from 0.98 to 1.09, suggesting that the Mugagangri monzogranite is a metaluminous to weak peraluminous I‐type high‐K calc‐alkaline granite. Geochemically, similar to the arc magmas, the monzogranite is enriched in large‐ion lithophile elements, and relatively depleted in high‐field‐strength elements. The monzogranite displays relatively high (87Sr/86Sr)i values (0.70972–0.71240), uniform εNd(t) values (−2.24 to −3.40), variable zircon εHf(t) values (−14.1 to +8.0), and high radiogenic Pb isotopic values (206Pb/204Pb = 18.588–18.790, 207Pb/204Pb = 15.616–15.642, and 208Pb/204Pb = 38.838–39.053). These geochemical characteristics indicate that the monzogranite was derived from a mixed source comprising ancient crustal and mantle materials, and experienced fractional crystallization during emplacement. We propose that the parental magma of the Mugagangri monzogranite was most likely generated during northward subduction of the Bangong Co‐Nujiang Meso‐Tethys Ocean.
At ca. 120 Ma, the mantle wedge partially melted due to metasomatism of subduction‐derived fluids and generated basaltic melts, which resulted in partial melting of crust and generation of felsic melts. Mantle‐derived basaltic magmas and crust‐derived felsic magmas mixed in deep‐seated magma chamber and formed mixed magmas. These mixed magmas experienced pronounced fractional crystallization in the magma chamber or during ascend, and then formed a series of medium‐acidic intrusive rocks represented by the Mugagangri monzogranite.</description><subject>Ablation</subject><subject>Aluminium</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Bangong Co‐Nujiang Suture Zone</subject><subject>Calcium</subject><subject>Crystallization</subject><subject>Fractional crystallization</subject><subject>Geochemistry</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Isotopes</subject><subject>I‐type granite</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Lava</subject><subject>Lead</subject><subject>Lead isotopes</subject><subject>Magma</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Paleoceanography</subject><subject>Potassium</subject><subject>Potassium oxides</subject><subject>Qiangtang</subject><subject>Radiometric dating</subject><subject>Saturation</subject><subject>Saturation index</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Sr–Nd–Pb–Hf isotopes</subject><subject>Strontium</subject><subject>Strontium 87</subject><subject>Strontium isotopes</subject><subject>Subduction</subject><subject>Tibet</subject><subject>Zircon</subject><subject>zircon U–Pb</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kU1u2zAQhYmiBeqmRa8wQBddxE5JUZKj7BKj-UN-WtTZdCOMpaFMwSZdkkrgrHKEALmhT1LKTpddkEPyffMeiGHss-AHgvPkW9MepLxI37CB4EUxElymb9mA83ESzxl_zz5433IuBE_FgG1-a1dZA3ebp5cfM8CG_BAastWcltoHtx4Cmhp-uajf1FsobucKtLfBrsiDVRDmBNddgw2axmlYWvNoG4dGBwJttrK3XSzOwE8doRBX3zjVMwpDeCAfem0y1waP4GK5WugKg7bGg7Jua0D3dtH1T_8CT6KHjTYTu3l6vuna3heuyffXKYX5Gg3cVoTmI3uncOHp02vdY3en36eT89HV7dnF5PhqhFIk6ajKsrzKCWUhKKmVRE4CD8ck8qpOsZaFxGymMB3LHA9lhnymipqUqLM6pggp99iXne_K2T9d_FLZ2s6ZGFkmmczyJE_GPFJfd1TlrPeOVLlyeoluXQpe9gMsm7bsBxjJ_R35oBe0_h9Wnl1u6b9ub6VK</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Huang, Han‐Xiao</creator><creator>Dai, Zuo‐Wen</creator><creator>Liu, Hong</creator><creator>Li, Guang‐Ming</creator><creator>Huizenga, Jan Marten</creator><creator>Zhang, Lin‐Kui</creator><creator>Huang, Yong</creator><creator>Cao, Hua‐Wen</creator><creator>Fu, Jian‐Gang</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3254-702X</orcidid><orcidid>https://orcid.org/0000-0002-3703-5843</orcidid><orcidid>https://orcid.org/0000-0003-4939-3493</orcidid><orcidid>https://orcid.org/0000-0002-9231-241X</orcidid></search><sort><creationdate>202106</creationdate><title>Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern Qiangtang of Tibet, western China: Implications for the evolution of the Bangong Co‐Nujiang Meso‐Tethyan Ocean</title><author>Huang, Han‐Xiao ; Dai, Zuo‐Wen ; Liu, Hong ; Li, Guang‐Ming ; Huizenga, Jan Marten ; Zhang, Lin‐Kui ; Huang, Yong ; Cao, Hua‐Wen ; Fu, Jian‐Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3124-c556c6ea391e2df3a0e1a87e16cd4ad393a5bfa4736a835a0bf9def1d5dcea133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Aluminium</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Bangong Co‐Nujiang Suture Zone</topic><topic>Calcium</topic><topic>Crystallization</topic><topic>Fractional crystallization</topic><topic>Geochemistry</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Isotopes</topic><topic>I‐type granite</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Lava</topic><topic>Lead</topic><topic>Lead isotopes</topic><topic>Magma</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Paleoceanography</topic><topic>Potassium</topic><topic>Potassium oxides</topic><topic>Qiangtang</topic><topic>Radiometric dating</topic><topic>Saturation</topic><topic>Saturation index</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Sr–Nd–Pb–Hf isotopes</topic><topic>Strontium</topic><topic>Strontium 87</topic><topic>Strontium isotopes</topic><topic>Subduction</topic><topic>Tibet</topic><topic>Zircon</topic><topic>zircon U–Pb</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Han‐Xiao</creatorcontrib><creatorcontrib>Dai, Zuo‐Wen</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Li, Guang‐Ming</creatorcontrib><creatorcontrib>Huizenga, Jan Marten</creatorcontrib><creatorcontrib>Zhang, Lin‐Kui</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Cao, Hua‐Wen</creatorcontrib><creatorcontrib>Fu, Jian‐Gang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Han‐Xiao</au><au>Dai, Zuo‐Wen</au><au>Liu, Hong</au><au>Li, Guang‐Ming</au><au>Huizenga, Jan Marten</au><au>Zhang, Lin‐Kui</au><au>Huang, Yong</au><au>Cao, Hua‐Wen</au><au>Fu, Jian‐Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern Qiangtang of Tibet, western China: Implications for the evolution of the Bangong Co‐Nujiang Meso‐Tethyan Ocean</atitle><jtitle>Geological journal (Chichester, England)</jtitle><date>2021-06</date><risdate>2021</risdate><volume>56</volume><issue>6</issue><spage>3170</spage><epage>3186</epage><pages>3170-3186</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><abstract>We present in‐situ zircon laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U–Pb ages, whole‐rock geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern margin of the Qiangtang Block, Tibet, western China. The zircons yield a U–Pb age of ca. 123 Ma. The hornblende‐bearing monzogranite shows metaluminous to weak peraluminous and high‐K calc‐alkaline characteristics exemplified by high silica (SiO2 = 67.57–70.57 wt%), high aluminium (Al2O3 = 14.68–15.78 wt%), high potassium (K2O = 4.00–5.14 wt%), high alkali (K2O + Na2O = 7.88–8.62 wt%), and low calcium contents (CaO = 1.72–2.17 wt%), with the aluminium saturation index (A/CNK) ranging from 0.98 to 1.09, suggesting that the Mugagangri monzogranite is a metaluminous to weak peraluminous I‐type high‐K calc‐alkaline granite. Geochemically, similar to the arc magmas, the monzogranite is enriched in large‐ion lithophile elements, and relatively depleted in high‐field‐strength elements. The monzogranite displays relatively high (87Sr/86Sr)i values (0.70972–0.71240), uniform εNd(t) values (−2.24 to −3.40), variable zircon εHf(t) values (−14.1 to +8.0), and high radiogenic Pb isotopic values (206Pb/204Pb = 18.588–18.790, 207Pb/204Pb = 15.616–15.642, and 208Pb/204Pb = 38.838–39.053). These geochemical characteristics indicate that the monzogranite was derived from a mixed source comprising ancient crustal and mantle materials, and experienced fractional crystallization during emplacement. We propose that the parental magma of the Mugagangri monzogranite was most likely generated during northward subduction of the Bangong Co‐Nujiang Meso‐Tethys Ocean.
At ca. 120 Ma, the mantle wedge partially melted due to metasomatism of subduction‐derived fluids and generated basaltic melts, which resulted in partial melting of crust and generation of felsic melts. Mantle‐derived basaltic magmas and crust‐derived felsic magmas mixed in deep‐seated magma chamber and formed mixed magmas. These mixed magmas experienced pronounced fractional crystallization in the magma chamber or during ascend, and then formed a series of medium‐acidic intrusive rocks represented by the Mugagangri monzogranite.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/gj.4094</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3254-702X</orcidid><orcidid>https://orcid.org/0000-0002-3703-5843</orcidid><orcidid>https://orcid.org/0000-0003-4939-3493</orcidid><orcidid>https://orcid.org/0000-0002-9231-241X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0072-1050 |
ispartof | Geological journal (Chichester, England), 2021-06, Vol.56 (6), p.3170-3186 |
issn | 0072-1050 1099-1034 |
language | eng |
recordid | cdi_proquest_journals_2535626270 |
source | Wiley Online Library All Journals |
subjects | Ablation Aluminium Aluminum Aluminum oxide Bangong Co‐Nujiang Suture Zone Calcium Crystallization Fractional crystallization Geochemistry Inductively coupled plasma mass spectrometry Isotopes I‐type granite Laser ablation Lasers Lava Lead Lead isotopes Magma Mass spectrometry Mass spectroscopy Paleoceanography Potassium Potassium oxides Qiangtang Radiometric dating Saturation Saturation index Silica Silicon dioxide Sr–Nd–Pb–Hf isotopes Strontium Strontium 87 Strontium isotopes Subduction Tibet Zircon zircon U–Pb |
title | Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb–Hf isotopes of the Mugagangri monzogranite in the southern Qiangtang of Tibet, western China: Implications for the evolution of the Bangong Co‐Nujiang Meso‐Tethyan Ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zircon%20U%E2%80%93Pb%20ages,%20geochemistry,%20and%20Sr%E2%80%93Nd%E2%80%93Pb%E2%80%93Hf%20isotopes%20of%20the%20Mugagangri%20monzogranite%20in%20the%20southern%20Qiangtang%20of%20Tibet,%20western%20China:%20Implications%20for%20the%20evolution%20of%20the%20Bangong%20Co%E2%80%90Nujiang%20Meso%E2%80%90Tethyan%20Ocean&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Huang,%20Han%E2%80%90Xiao&rft.date=2021-06&rft.volume=56&rft.issue=6&rft.spage=3170&rft.epage=3186&rft.pages=3170-3186&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002/gj.4094&rft_dat=%3Cproquest_cross%3E2535626270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535626270&rft_id=info:pmid/&rfr_iscdi=true |