A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China
The accurate determination of methane adsorption isotherms in coals is crucial for both the evaluation of underground coalbed methane (CBM) reserves and design of development strategies for enhancing CBM recovery. However, the experimental measurement of high-pressure methane adsorption isotherms is...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2020-10, Vol.13 (20), p.5369, Article 5369 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 5369 |
container_title | Energies (Basel) |
container_volume | 13 |
creator | Zhang, Jiyuan Feng, Qihong Zhang, Xianmin Hu, Qiujia Yang, Jiaosheng Wang, Ning |
description | The accurate determination of methane adsorption isotherms in coals is crucial for both the evaluation of underground coalbed methane (CBM) reserves and design of development strategies for enhancing CBM recovery. However, the experimental measurement of high-pressure methane adsorption isotherms is extremely tedious and time-consuming. This paper proposed the use of an ensemble machine learning (ML) method, namely the gradient boosting decision tree (GBDT), in order to accurately estimate methane adsorption isotherms based on coal properties in the Qinshui basin, China. The GBDT method was trained to correlate the adsorption amount with coal properties (ash, fixed carbon, moisture, vitrinite, and vitrinite reflectance) and experimental conditions (pressure, equilibrium moisture, and temperature). The results show that the estimated adsorption amounts agree well with the experimental ones, which prove the accuracy and robustness of the GBDT method. A comparison of the GBDT with two commonly used ML methods, namely the artificial neural network (ANN) and support vector machine (SVM), confirms the superiority of GBDT in terms of generalization capability and robustness. Furthermore, relative importance scanning and univariate analysis based on the constructed GBDT model were conducted, which showed that the fixed carbon and ash contents are primary factors that significantly affect the adsorption isotherms for the coal samples in this study. |
doi_str_mv | 10.3390/en13205369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2535606368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3bf9da6afd234d7fa5e0cb09f7285ac8</doaj_id><sourcerecordid>2535606368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-963c78a4964bd372e43a6808e56afd97e79fa91c74f2003905cc2a95394aac373</originalsourceid><addsrcrecordid>eNqNkcFu1DAURSMEElXphi-wxA4I2HmJHbObZkoZqYAQ7Tp647x0PJrag-0U9Wv4VZwZVFjija2re4_9fIvipeDvADR_T05AxRuQ-klxIrSWpeAKnv5zfl6cxbjleQEIADgpfi3YF39PO7bEhOUy2Hty7DOljR9Y8uwiJnuHiQ4SOmKLIfqwT9Y7too-bSjcsXzuPO4iu4nW3bIsssuAgyWX2Ln3GZHVJRkb59h1IPrAFqzDSOx7moYHZt0h9M26uJksO8fMecu6jXX4ong2ZjSd_dlPi5uPF9fdp_Lq6-WqW1yVBqRIpZZgVIu1lvV6AFVRDShb3lIjcRy0IqVH1MKoeqzy8Jo3xlSoG9A1ogEFp8XqyB08bvt9yFOHh96j7Q-CD7c9hmTNjnpYj3rAmVtBPagRG-JmzfWoqrZB02bWqyNrH_yPiWLqt34KLj-_rxpoJJcgZ9fro8sEH2Og8fFWwfu5z_5vn9ncHs0_ae3HaPLfGnoM5D6bVrZSqbla0dmEc0Odn1zK0Tf_H4XfCiOyuQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535606368</pqid></control><display><type>article</type><title>A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Zhang, Jiyuan ; Feng, Qihong ; Zhang, Xianmin ; Hu, Qiujia ; Yang, Jiaosheng ; Wang, Ning</creator><creatorcontrib>Zhang, Jiyuan ; Feng, Qihong ; Zhang, Xianmin ; Hu, Qiujia ; Yang, Jiaosheng ; Wang, Ning</creatorcontrib><description>The accurate determination of methane adsorption isotherms in coals is crucial for both the evaluation of underground coalbed methane (CBM) reserves and design of development strategies for enhancing CBM recovery. However, the experimental measurement of high-pressure methane adsorption isotherms is extremely tedious and time-consuming. This paper proposed the use of an ensemble machine learning (ML) method, namely the gradient boosting decision tree (GBDT), in order to accurately estimate methane adsorption isotherms based on coal properties in the Qinshui basin, China. The GBDT method was trained to correlate the adsorption amount with coal properties (ash, fixed carbon, moisture, vitrinite, and vitrinite reflectance) and experimental conditions (pressure, equilibrium moisture, and temperature). The results show that the estimated adsorption amounts agree well with the experimental ones, which prove the accuracy and robustness of the GBDT method. A comparison of the GBDT with two commonly used ML methods, namely the artificial neural network (ANN) and support vector machine (SVM), confirms the superiority of GBDT in terms of generalization capability and robustness. Furthermore, relative importance scanning and univariate analysis based on the constructed GBDT model were conducted, which showed that the fixed carbon and ash contents are primary factors that significantly affect the adsorption isotherms for the coal samples in this study.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13205369</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adsorption ; Algorithms ; Ashes ; Carbon ; Coal ; coal properties ; Coalbed methane ; Decision trees ; Energy & Fuels ; Equilibrium ; estimation model ; gradient boosting decision tree ; Isotherms ; Laboratories ; Learning algorithms ; Learning theory ; machine learning ; Methane ; methane adsorption isotherm ; Methods ; Moisture ; Neural networks ; Science & Technology ; Support vector machines ; Technology</subject><ispartof>Energies (Basel), 2020-10, Vol.13 (20), p.5369, Article 5369</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000586867700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c361t-963c78a4964bd372e43a6808e56afd97e79fa91c74f2003905cc2a95394aac373</citedby><cites>FETCH-LOGICAL-c361t-963c78a4964bd372e43a6808e56afd97e79fa91c74f2003905cc2a95394aac373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Zhang, Jiyuan</creatorcontrib><creatorcontrib>Feng, Qihong</creatorcontrib><creatorcontrib>Zhang, Xianmin</creatorcontrib><creatorcontrib>Hu, Qiujia</creatorcontrib><creatorcontrib>Yang, Jiaosheng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><title>A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China</title><title>Energies (Basel)</title><addtitle>ENERGIES</addtitle><description>The accurate determination of methane adsorption isotherms in coals is crucial for both the evaluation of underground coalbed methane (CBM) reserves and design of development strategies for enhancing CBM recovery. However, the experimental measurement of high-pressure methane adsorption isotherms is extremely tedious and time-consuming. This paper proposed the use of an ensemble machine learning (ML) method, namely the gradient boosting decision tree (GBDT), in order to accurately estimate methane adsorption isotherms based on coal properties in the Qinshui basin, China. The GBDT method was trained to correlate the adsorption amount with coal properties (ash, fixed carbon, moisture, vitrinite, and vitrinite reflectance) and experimental conditions (pressure, equilibrium moisture, and temperature). The results show that the estimated adsorption amounts agree well with the experimental ones, which prove the accuracy and robustness of the GBDT method. A comparison of the GBDT with two commonly used ML methods, namely the artificial neural network (ANN) and support vector machine (SVM), confirms the superiority of GBDT in terms of generalization capability and robustness. Furthermore, relative importance scanning and univariate analysis based on the constructed GBDT model were conducted, which showed that the fixed carbon and ash contents are primary factors that significantly affect the adsorption isotherms for the coal samples in this study.</description><subject>Adsorption</subject><subject>Algorithms</subject><subject>Ashes</subject><subject>Carbon</subject><subject>Coal</subject><subject>coal properties</subject><subject>Coalbed methane</subject><subject>Decision trees</subject><subject>Energy & Fuels</subject><subject>Equilibrium</subject><subject>estimation model</subject><subject>gradient boosting decision tree</subject><subject>Isotherms</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Learning theory</subject><subject>machine learning</subject><subject>Methane</subject><subject>methane adsorption isotherm</subject><subject>Methods</subject><subject>Moisture</subject><subject>Neural networks</subject><subject>Science & Technology</subject><subject>Support vector machines</subject><subject>Technology</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkcFu1DAURSMEElXphi-wxA4I2HmJHbObZkoZqYAQ7Tp647x0PJrag-0U9Wv4VZwZVFjija2re4_9fIvipeDvADR_T05AxRuQ-klxIrSWpeAKnv5zfl6cxbjleQEIADgpfi3YF39PO7bEhOUy2Hty7DOljR9Y8uwiJnuHiQ4SOmKLIfqwT9Y7too-bSjcsXzuPO4iu4nW3bIsssuAgyWX2Ln3GZHVJRkb59h1IPrAFqzDSOx7moYHZt0h9M26uJksO8fMecu6jXX4ong2ZjSd_dlPi5uPF9fdp_Lq6-WqW1yVBqRIpZZgVIu1lvV6AFVRDShb3lIjcRy0IqVH1MKoeqzy8Jo3xlSoG9A1ogEFp8XqyB08bvt9yFOHh96j7Q-CD7c9hmTNjnpYj3rAmVtBPagRG-JmzfWoqrZB02bWqyNrH_yPiWLqt34KLj-_rxpoJJcgZ9fro8sEH2Og8fFWwfu5z_5vn9ncHs0_ae3HaPLfGnoM5D6bVrZSqbla0dmEc0Odn1zK0Tf_H4XfCiOyuQ</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Zhang, Jiyuan</creator><creator>Feng, Qihong</creator><creator>Zhang, Xianmin</creator><creator>Hu, Qiujia</creator><creator>Yang, Jiaosheng</creator><creator>Wang, Ning</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20201015</creationdate><title>A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China</title><author>Zhang, Jiyuan ; Feng, Qihong ; Zhang, Xianmin ; Hu, Qiujia ; Yang, Jiaosheng ; Wang, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-963c78a4964bd372e43a6808e56afd97e79fa91c74f2003905cc2a95394aac373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Algorithms</topic><topic>Ashes</topic><topic>Carbon</topic><topic>Coal</topic><topic>coal properties</topic><topic>Coalbed methane</topic><topic>Decision trees</topic><topic>Energy & Fuels</topic><topic>Equilibrium</topic><topic>estimation model</topic><topic>gradient boosting decision tree</topic><topic>Isotherms</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Learning theory</topic><topic>machine learning</topic><topic>Methane</topic><topic>methane adsorption isotherm</topic><topic>Methods</topic><topic>Moisture</topic><topic>Neural networks</topic><topic>Science & Technology</topic><topic>Support vector machines</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiyuan</creatorcontrib><creatorcontrib>Feng, Qihong</creatorcontrib><creatorcontrib>Zhang, Xianmin</creatorcontrib><creatorcontrib>Hu, Qiujia</creatorcontrib><creatorcontrib>Yang, Jiaosheng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiyuan</au><au>Feng, Qihong</au><au>Zhang, Xianmin</au><au>Hu, Qiujia</au><au>Yang, Jiaosheng</au><au>Wang, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China</atitle><jtitle>Energies (Basel)</jtitle><stitle>ENERGIES</stitle><date>2020-10-15</date><risdate>2020</risdate><volume>13</volume><issue>20</issue><spage>5369</spage><pages>5369-</pages><artnum>5369</artnum><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The accurate determination of methane adsorption isotherms in coals is crucial for both the evaluation of underground coalbed methane (CBM) reserves and design of development strategies for enhancing CBM recovery. However, the experimental measurement of high-pressure methane adsorption isotherms is extremely tedious and time-consuming. This paper proposed the use of an ensemble machine learning (ML) method, namely the gradient boosting decision tree (GBDT), in order to accurately estimate methane adsorption isotherms based on coal properties in the Qinshui basin, China. The GBDT method was trained to correlate the adsorption amount with coal properties (ash, fixed carbon, moisture, vitrinite, and vitrinite reflectance) and experimental conditions (pressure, equilibrium moisture, and temperature). The results show that the estimated adsorption amounts agree well with the experimental ones, which prove the accuracy and robustness of the GBDT method. A comparison of the GBDT with two commonly used ML methods, namely the artificial neural network (ANN) and support vector machine (SVM), confirms the superiority of GBDT in terms of generalization capability and robustness. Furthermore, relative importance scanning and univariate analysis based on the constructed GBDT model were conducted, which showed that the fixed carbon and ash contents are primary factors that significantly affect the adsorption isotherms for the coal samples in this study.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/en13205369</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2020-10, Vol.13 (20), p.5369, Article 5369 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_proquest_journals_2535606368 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Adsorption Algorithms Ashes Carbon Coal coal properties Coalbed methane Decision trees Energy & Fuels Equilibrium estimation model gradient boosting decision tree Isotherms Laboratories Learning algorithms Learning theory machine learning Methane methane adsorption isotherm Methods Moisture Neural networks Science & Technology Support vector machines Technology |
title | A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Data-Driven%20Method%20to%20Estimate%20Methane%20Adsorption%20Isotherm%20on%20Coals%20Using%20the%20Gradient%20Boosting%20Decision%20Tree:%20A%20Case%20Study%20in%20the%20Qinshui%20Basin,%20China&rft.jtitle=Energies%20(Basel)&rft.au=Zhang,%20Jiyuan&rft.date=2020-10-15&rft.volume=13&rft.issue=20&rft.spage=5369&rft.pages=5369-&rft.artnum=5369&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13205369&rft_dat=%3Cproquest_webof%3E2535606368%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535606368&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3bf9da6afd234d7fa5e0cb09f7285ac8&rfr_iscdi=true |