Adsorption for efficient low carbon hydrogen production: part 1—adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X

Reforming of fossil fuels coupled with carbon capture and storage has the potential to produce low-carbon H 2 at large scale and low cost. Adsorption is a potentially promising technology for two key separation tasks in this process: H 2 purification and CO 2 capture. In this work, we present equili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Adsorption : journal of the International Adsorption Society 2021, Vol.27 (4), p.541-558
Hauptverfasser: Streb, Anne, Mazzotti, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 4
container_start_page 541
container_title Adsorption : journal of the International Adsorption Society
container_volume 27
creator Streb, Anne
Mazzotti, Marco
description Reforming of fossil fuels coupled with carbon capture and storage has the potential to produce low-carbon H 2 at large scale and low cost. Adsorption is a potentially promising technology for two key separation tasks in this process: H 2 purification and CO 2 capture. In this work, we present equilibrium adsorption data of H 2 and CH 4 on zeolite 13X, in addition to the already established CO 2 isotherms. Further, we carry out binary (CO 2 –CH 4 ) and ternary (H 2 –CO 2 –CH 4 ) breakthrough experiments at various pressures and temperatures to estimate transport parameters, assess the predictive capacity of our 1D column model, and compare different multi-component adsorption models. CO 2 adsorbs strongly on zeolite 13X, CH 4 adsorbs less, and H 2 adsorbs very little. Thus, H 2 breaks through first, CH 4 second (first in the binary breakthrough experiments) and CO 2 last. Linear driving force (LDF) mass transfer coefficients are estimated based on a single breakthrough experiment and mass transfer is found to be fast for H 2 , slower for CH 4 , and slowest for CO 2 . The LDF parameters can be used in a predictive manner for breakthrough experiments at varying pressures, temperatures, flows, and, though with lower accuracy, even compositions. Heat transfer inside the column is described well with a literature correlation, thus yielding an excellent agreement between simulated and measured column temperatures. Ideal and real adsorbed solution theories (IAST and RAST, respectively) both model the observed breakthrough composition profiles well, whereas extended isotherms are inferior for predicting the competitive behavior between CH 4 and CO 2 adsorption. This study provides the groundwork necessary for full cyclic experiments and their simulation.
doi_str_mv 10.1007/s10450-021-00306-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535302082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535302082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381y-12baecca636e8ea013508813b7e1e704479a7bfe26eef39d8b86efd2a4b5d3293</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEuXnAqwssQ4d20mcsKsqoEiVugGJneUkk9ZQ4tZOhMKKG7DhhJwE0yB1x2I0i_nee5pHyAWDKwYgx55BnEAEnEUAAtKoPyAjlkgeZTKRh2QEOc-jJAV5TE68fwaAPJViRD4nlbdu0xrb0No6inVtSoNNS9f2jZbaFeGw6itnl9jQjbNVV_7C13SjXUvZ98eX3jvgtjNrUzjTvVLdVLRwqF_albPdckV921UG_S5mxsfTRZhZTIPsHe3atEiZeDojR7Veezz_26fk8fbmYTqL5ou7--lkHpUiY33EeKGxLHUqUsxQAxMJZBkThUSGEuJY5loWNfIUsRZ5lRVZinXFdVwkleC5OCWXg294aduhb9Wz7VwTIhVPRCKAQ8YDxQeqdNZ7h7XaOPOqXa8YqN_i1VC8CsWrXfGqDyIxiHyAmyW6vfU_qh-MdYl_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535302082</pqid></control><display><type>article</type><title>Adsorption for efficient low carbon hydrogen production: part 1—adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X</title><source>SpringerLink Journals - AutoHoldings</source><creator>Streb, Anne ; Mazzotti, Marco</creator><creatorcontrib>Streb, Anne ; Mazzotti, Marco</creatorcontrib><description>Reforming of fossil fuels coupled with carbon capture and storage has the potential to produce low-carbon H 2 at large scale and low cost. Adsorption is a potentially promising technology for two key separation tasks in this process: H 2 purification and CO 2 capture. In this work, we present equilibrium adsorption data of H 2 and CH 4 on zeolite 13X, in addition to the already established CO 2 isotherms. Further, we carry out binary (CO 2 –CH 4 ) and ternary (H 2 –CO 2 –CH 4 ) breakthrough experiments at various pressures and temperatures to estimate transport parameters, assess the predictive capacity of our 1D column model, and compare different multi-component adsorption models. CO 2 adsorbs strongly on zeolite 13X, CH 4 adsorbs less, and H 2 adsorbs very little. Thus, H 2 breaks through first, CH 4 second (first in the binary breakthrough experiments) and CO 2 last. Linear driving force (LDF) mass transfer coefficients are estimated based on a single breakthrough experiment and mass transfer is found to be fast for H 2 , slower for CH 4 , and slowest for CO 2 . The LDF parameters can be used in a predictive manner for breakthrough experiments at varying pressures, temperatures, flows, and, though with lower accuracy, even compositions. Heat transfer inside the column is described well with a literature correlation, thus yielding an excellent agreement between simulated and measured column temperatures. Ideal and real adsorbed solution theories (IAST and RAST, respectively) both model the observed breakthrough composition profiles well, whereas extended isotherms are inferior for predicting the competitive behavior between CH 4 and CO 2 adsorption. This study provides the groundwork necessary for full cyclic experiments and their simulation.</description><identifier>ISSN: 0929-5607</identifier><identifier>EISSN: 1572-8757</identifier><identifier>DOI: 10.1007/s10450-021-00306-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorption ; Carbon ; Carbon dioxide ; Carbon sequestration ; Chemistry ; Chemistry and Materials Science ; Composition ; Engineering Thermodynamics ; Experiments ; Fossil fuels ; Heat and Mass Transfer ; Hydrogen production ; Industrial Chemistry/Chemical Engineering ; Isotherms ; Mass transfer ; Mathematical models ; Methane ; Parameter estimation ; Reforming ; S.I.: Sircar Memorial Issue ; Surfaces and Interfaces ; Thin Films ; Zeolites</subject><ispartof>Adsorption : journal of the International Adsorption Society, 2021, Vol.27 (4), p.541-558</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381y-12baecca636e8ea013508813b7e1e704479a7bfe26eef39d8b86efd2a4b5d3293</citedby><cites>FETCH-LOGICAL-c381y-12baecca636e8ea013508813b7e1e704479a7bfe26eef39d8b86efd2a4b5d3293</cites><orcidid>0000-0001-8159-707X ; 0000-0002-4948-6705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10450-021-00306-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10450-021-00306-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Streb, Anne</creatorcontrib><creatorcontrib>Mazzotti, Marco</creatorcontrib><title>Adsorption for efficient low carbon hydrogen production: part 1—adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X</title><title>Adsorption : journal of the International Adsorption Society</title><addtitle>Adsorption</addtitle><description>Reforming of fossil fuels coupled with carbon capture and storage has the potential to produce low-carbon H 2 at large scale and low cost. Adsorption is a potentially promising technology for two key separation tasks in this process: H 2 purification and CO 2 capture. In this work, we present equilibrium adsorption data of H 2 and CH 4 on zeolite 13X, in addition to the already established CO 2 isotherms. Further, we carry out binary (CO 2 –CH 4 ) and ternary (H 2 –CO 2 –CH 4 ) breakthrough experiments at various pressures and temperatures to estimate transport parameters, assess the predictive capacity of our 1D column model, and compare different multi-component adsorption models. CO 2 adsorbs strongly on zeolite 13X, CH 4 adsorbs less, and H 2 adsorbs very little. Thus, H 2 breaks through first, CH 4 second (first in the binary breakthrough experiments) and CO 2 last. Linear driving force (LDF) mass transfer coefficients are estimated based on a single breakthrough experiment and mass transfer is found to be fast for H 2 , slower for CH 4 , and slowest for CO 2 . The LDF parameters can be used in a predictive manner for breakthrough experiments at varying pressures, temperatures, flows, and, though with lower accuracy, even compositions. Heat transfer inside the column is described well with a literature correlation, thus yielding an excellent agreement between simulated and measured column temperatures. Ideal and real adsorbed solution theories (IAST and RAST, respectively) both model the observed breakthrough composition profiles well, whereas extended isotherms are inferior for predicting the competitive behavior between CH 4 and CO 2 adsorption. This study provides the groundwork necessary for full cyclic experiments and their simulation.</description><subject>Adsorption</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Engineering Thermodynamics</subject><subject>Experiments</subject><subject>Fossil fuels</subject><subject>Heat and Mass Transfer</subject><subject>Hydrogen production</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Isotherms</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Parameter estimation</subject><subject>Reforming</subject><subject>S.I.: Sircar Memorial Issue</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Zeolites</subject><issn>0929-5607</issn><issn>1572-8757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1OwzAQhS0EEuXnAqwssQ4d20mcsKsqoEiVugGJneUkk9ZQ4tZOhMKKG7DhhJwE0yB1x2I0i_nee5pHyAWDKwYgx55BnEAEnEUAAtKoPyAjlkgeZTKRh2QEOc-jJAV5TE68fwaAPJViRD4nlbdu0xrb0No6inVtSoNNS9f2jZbaFeGw6itnl9jQjbNVV_7C13SjXUvZ98eX3jvgtjNrUzjTvVLdVLRwqF_albPdckV921UG_S5mxsfTRZhZTIPsHe3atEiZeDojR7Veezz_26fk8fbmYTqL5ou7--lkHpUiY33EeKGxLHUqUsxQAxMJZBkThUSGEuJY5loWNfIUsRZ5lRVZinXFdVwkleC5OCWXg294aduhb9Wz7VwTIhVPRCKAQ8YDxQeqdNZ7h7XaOPOqXa8YqN_i1VC8CsWrXfGqDyIxiHyAmyW6vfU_qh-MdYl_</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Streb, Anne</creator><creator>Mazzotti, Marco</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8159-707X</orcidid><orcidid>https://orcid.org/0000-0002-4948-6705</orcidid></search><sort><creationdate>2021</creationdate><title>Adsorption for efficient low carbon hydrogen production: part 1—adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X</title><author>Streb, Anne ; Mazzotti, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381y-12baecca636e8ea013508813b7e1e704479a7bfe26eef39d8b86efd2a4b5d3293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Engineering Thermodynamics</topic><topic>Experiments</topic><topic>Fossil fuels</topic><topic>Heat and Mass Transfer</topic><topic>Hydrogen production</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Isotherms</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Parameter estimation</topic><topic>Reforming</topic><topic>S.I.: Sircar Memorial Issue</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Streb, Anne</creatorcontrib><creatorcontrib>Mazzotti, Marco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Adsorption : journal of the International Adsorption Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Streb, Anne</au><au>Mazzotti, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption for efficient low carbon hydrogen production: part 1—adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X</atitle><jtitle>Adsorption : journal of the International Adsorption Society</jtitle><stitle>Adsorption</stitle><date>2021</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>541</spage><epage>558</epage><pages>541-558</pages><issn>0929-5607</issn><eissn>1572-8757</eissn><abstract>Reforming of fossil fuels coupled with carbon capture and storage has the potential to produce low-carbon H 2 at large scale and low cost. Adsorption is a potentially promising technology for two key separation tasks in this process: H 2 purification and CO 2 capture. In this work, we present equilibrium adsorption data of H 2 and CH 4 on zeolite 13X, in addition to the already established CO 2 isotherms. Further, we carry out binary (CO 2 –CH 4 ) and ternary (H 2 –CO 2 –CH 4 ) breakthrough experiments at various pressures and temperatures to estimate transport parameters, assess the predictive capacity of our 1D column model, and compare different multi-component adsorption models. CO 2 adsorbs strongly on zeolite 13X, CH 4 adsorbs less, and H 2 adsorbs very little. Thus, H 2 breaks through first, CH 4 second (first in the binary breakthrough experiments) and CO 2 last. Linear driving force (LDF) mass transfer coefficients are estimated based on a single breakthrough experiment and mass transfer is found to be fast for H 2 , slower for CH 4 , and slowest for CO 2 . The LDF parameters can be used in a predictive manner for breakthrough experiments at varying pressures, temperatures, flows, and, though with lower accuracy, even compositions. Heat transfer inside the column is described well with a literature correlation, thus yielding an excellent agreement between simulated and measured column temperatures. Ideal and real adsorbed solution theories (IAST and RAST, respectively) both model the observed breakthrough composition profiles well, whereas extended isotherms are inferior for predicting the competitive behavior between CH 4 and CO 2 adsorption. This study provides the groundwork necessary for full cyclic experiments and their simulation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10450-021-00306-y</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8159-707X</orcidid><orcidid>https://orcid.org/0000-0002-4948-6705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0929-5607
ispartof Adsorption : journal of the International Adsorption Society, 2021, Vol.27 (4), p.541-558
issn 0929-5607
1572-8757
language eng
recordid cdi_proquest_journals_2535302082
source SpringerLink Journals - AutoHoldings
subjects Adsorption
Carbon
Carbon dioxide
Carbon sequestration
Chemistry
Chemistry and Materials Science
Composition
Engineering Thermodynamics
Experiments
Fossil fuels
Heat and Mass Transfer
Hydrogen production
Industrial Chemistry/Chemical Engineering
Isotherms
Mass transfer
Mathematical models
Methane
Parameter estimation
Reforming
S.I.: Sircar Memorial Issue
Surfaces and Interfaces
Thin Films
Zeolites
title Adsorption for efficient low carbon hydrogen production: part 1—adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20for%20efficient%20low%20carbon%20hydrogen%20production:%20part%201%E2%80%94adsorption%20equilibrium%20and%20breakthrough%20studies%20for%20H2/CO2/CH4%20on%20zeolite%2013X&rft.jtitle=Adsorption%20:%20journal%20of%20the%20International%20Adsorption%20Society&rft.au=Streb,%20Anne&rft.date=2021&rft.volume=27&rft.issue=4&rft.spage=541&rft.epage=558&rft.pages=541-558&rft.issn=0929-5607&rft.eissn=1572-8757&rft_id=info:doi/10.1007/s10450-021-00306-y&rft_dat=%3Cproquest_cross%3E2535302082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535302082&rft_id=info:pmid/&rfr_iscdi=true