Categorization of Intercloud users and auto-scaling of resources
Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity...
Gespeichert in:
Veröffentlicht in: | Evolutionary intelligence 2021-06, Vol.14 (2), p.369-379 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 2 |
container_start_page | 369 |
container_title | Evolutionary intelligence |
container_volume | 14 |
creator | Jena, Tamanna Mohanty, J. R. Satapathy, Suresh Chandra |
description | Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity of the problem increases as requirement changes in terms of capacity, speed and time. To tide overfrequent changes in customer requirement and optimum utilization of available resources, a heuristic algorithm is proposed which will fit to the specification. The proposed algorithm is primarily divided into three phases, namely categorization of users, genetic algorithm-based resource allocation and earliest deadline first scheduling. The objective is to map the tasks to be executed to available VMs of the multi-cloud federation in order to have minimum makespan time and maximum customer satisfaction. After pr simulation on synthetic data, compared the simulation results with the existing scheduling algorithm. Results of the simulation confirm that the proposed categorization of the user in cloud domain can be beneficial in many folds and can address the existing challenges as per concerned metrics. |
doi_str_mv | 10.1007/s12065-019-00220-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535302065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535302065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f1206250fa4949741f9da0c57627ff133007ce4e2cbaf0b5d660dd41a94f3cda3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmX5A5wicTaMtwTfQBVLpUpc4Gy5XqpUJS6eRCr8ehyC4MZp5vDemzcfIRcMrhhAc42MQ60oME0BOAe6PyAzdlNLqjRrDn930MfkBHEDUHNo5Izczm0f1im3n7ZvU1elWC26PmS3TYOvBgwZK9v5yg59oujstu3WoygHTEN2Ac_IUbRbDOc_85S8Pty_zJ_o8vlxMb9bUieY7mkcC3IF0UotdSNZ1N6CU03NmxiZEOULF2TgbmUjrJSva_BeMqtlFM5bcUoup9xdTu9DwN5sSoGunDRcCSVgBFBUfFK5nBBziGaX2zebPwwDM5IyEylTSJlvUmZfTGIyYRF365D_ov9xfQGTjGwW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535302065</pqid></control><display><type>article</type><title>Categorization of Intercloud users and auto-scaling of resources</title><source>SpringerLink Journals</source><creator>Jena, Tamanna ; Mohanty, J. R. ; Satapathy, Suresh Chandra</creator><creatorcontrib>Jena, Tamanna ; Mohanty, J. R. ; Satapathy, Suresh Chandra</creatorcontrib><description>Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity of the problem increases as requirement changes in terms of capacity, speed and time. To tide overfrequent changes in customer requirement and optimum utilization of available resources, a heuristic algorithm is proposed which will fit to the specification. The proposed algorithm is primarily divided into three phases, namely categorization of users, genetic algorithm-based resource allocation and earliest deadline first scheduling. The objective is to map the tasks to be executed to available VMs of the multi-cloud federation in order to have minimum makespan time and maximum customer satisfaction. After pr simulation on synthetic data, compared the simulation results with the existing scheduling algorithm. Results of the simulation confirm that the proposed categorization of the user in cloud domain can be beneficial in many folds and can address the existing challenges as per concerned metrics.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-019-00220-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Classification ; Cloud computing ; Control ; Customer satisfaction ; Engineering ; Genetic algorithms ; Heuristic methods ; Mathematical and Computational Engineering ; Mechatronics ; Optimization ; Resource allocation ; Robotics ; Simulation ; Special Issue ; Statistical Physics and Dynamical Systems ; Task scheduling ; Virtual environments</subject><ispartof>Evolutionary intelligence, 2021-06, Vol.14 (2), p.369-379</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f1206250fa4949741f9da0c57627ff133007ce4e2cbaf0b5d660dd41a94f3cda3</citedby><cites>FETCH-LOGICAL-c319t-f1206250fa4949741f9da0c57627ff133007ce4e2cbaf0b5d660dd41a94f3cda3</cites><orcidid>0000-0003-2703-7420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-019-00220-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-019-00220-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Jena, Tamanna</creatorcontrib><creatorcontrib>Mohanty, J. R.</creatorcontrib><creatorcontrib>Satapathy, Suresh Chandra</creatorcontrib><title>Categorization of Intercloud users and auto-scaling of resources</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity of the problem increases as requirement changes in terms of capacity, speed and time. To tide overfrequent changes in customer requirement and optimum utilization of available resources, a heuristic algorithm is proposed which will fit to the specification. The proposed algorithm is primarily divided into three phases, namely categorization of users, genetic algorithm-based resource allocation and earliest deadline first scheduling. The objective is to map the tasks to be executed to available VMs of the multi-cloud federation in order to have minimum makespan time and maximum customer satisfaction. After pr simulation on synthetic data, compared the simulation results with the existing scheduling algorithm. Results of the simulation confirm that the proposed categorization of the user in cloud domain can be beneficial in many folds and can address the existing challenges as per concerned metrics.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Classification</subject><subject>Cloud computing</subject><subject>Control</subject><subject>Customer satisfaction</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Robotics</subject><subject>Simulation</subject><subject>Special Issue</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Task scheduling</subject><subject>Virtual environments</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEmX5A5wicTaMtwTfQBVLpUpc4Gy5XqpUJS6eRCr8ehyC4MZp5vDemzcfIRcMrhhAc42MQ60oME0BOAe6PyAzdlNLqjRrDn930MfkBHEDUHNo5Izczm0f1im3n7ZvU1elWC26PmS3TYOvBgwZK9v5yg59oujstu3WoygHTEN2Ac_IUbRbDOc_85S8Pty_zJ_o8vlxMb9bUieY7mkcC3IF0UotdSNZ1N6CU03NmxiZEOULF2TgbmUjrJSva_BeMqtlFM5bcUoup9xdTu9DwN5sSoGunDRcCSVgBFBUfFK5nBBziGaX2zebPwwDM5IyEylTSJlvUmZfTGIyYRF365D_ov9xfQGTjGwW</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Jena, Tamanna</creator><creator>Mohanty, J. R.</creator><creator>Satapathy, Suresh Chandra</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2703-7420</orcidid></search><sort><creationdate>20210601</creationdate><title>Categorization of Intercloud users and auto-scaling of resources</title><author>Jena, Tamanna ; Mohanty, J. R. ; Satapathy, Suresh Chandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f1206250fa4949741f9da0c57627ff133007ce4e2cbaf0b5d660dd41a94f3cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Classification</topic><topic>Cloud computing</topic><topic>Control</topic><topic>Customer satisfaction</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Robotics</topic><topic>Simulation</topic><topic>Special Issue</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Task scheduling</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jena, Tamanna</creatorcontrib><creatorcontrib>Mohanty, J. R.</creatorcontrib><creatorcontrib>Satapathy, Suresh Chandra</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jena, Tamanna</au><au>Mohanty, J. R.</au><au>Satapathy, Suresh Chandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Categorization of Intercloud users and auto-scaling of resources</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>369</spage><epage>379</epage><pages>369-379</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity of the problem increases as requirement changes in terms of capacity, speed and time. To tide overfrequent changes in customer requirement and optimum utilization of available resources, a heuristic algorithm is proposed which will fit to the specification. The proposed algorithm is primarily divided into three phases, namely categorization of users, genetic algorithm-based resource allocation and earliest deadline first scheduling. The objective is to map the tasks to be executed to available VMs of the multi-cloud federation in order to have minimum makespan time and maximum customer satisfaction. After pr simulation on synthetic data, compared the simulation results with the existing scheduling algorithm. Results of the simulation confirm that the proposed categorization of the user in cloud domain can be beneficial in many folds and can address the existing challenges as per concerned metrics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-019-00220-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2703-7420</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5909 |
ispartof | Evolutionary intelligence, 2021-06, Vol.14 (2), p.369-379 |
issn | 1864-5909 1864-5917 |
language | eng |
recordid | cdi_proquest_journals_2535302065 |
source | SpringerLink Journals |
subjects | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Classification Cloud computing Control Customer satisfaction Engineering Genetic algorithms Heuristic methods Mathematical and Computational Engineering Mechatronics Optimization Resource allocation Robotics Simulation Special Issue Statistical Physics and Dynamical Systems Task scheduling Virtual environments |
title | Categorization of Intercloud users and auto-scaling of resources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Categorization%20of%20Intercloud%20users%20and%20auto-scaling%20of%20resources&rft.jtitle=Evolutionary%20intelligence&rft.au=Jena,%20Tamanna&rft.date=2021-06-01&rft.volume=14&rft.issue=2&rft.spage=369&rft.epage=379&rft.pages=369-379&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-019-00220-x&rft_dat=%3Cproquest_cross%3E2535302065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535302065&rft_id=info:pmid/&rfr_iscdi=true |