Categorization of Intercloud users and auto-scaling of resources

Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary intelligence 2021-06, Vol.14 (2), p.369-379
Hauptverfasser: Jena, Tamanna, Mohanty, J. R., Satapathy, Suresh Chandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 2
container_start_page 369
container_title Evolutionary intelligence
container_volume 14
creator Jena, Tamanna
Mohanty, J. R.
Satapathy, Suresh Chandra
description Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity of the problem increases as requirement changes in terms of capacity, speed and time. To tide overfrequent changes in customer requirement and optimum utilization of available resources, a heuristic algorithm is proposed which will fit to the specification. The proposed algorithm is primarily divided into three phases, namely categorization of users, genetic algorithm-based resource allocation and earliest deadline first scheduling. The objective is to map the tasks to be executed to available VMs of the multi-cloud federation in order to have minimum makespan time and maximum customer satisfaction. After pr simulation on synthetic data, compared the simulation results with the existing scheduling algorithm. Results of the simulation confirm that the proposed categorization of the user in cloud domain can be beneficial in many folds and can address the existing challenges as per concerned metrics.
doi_str_mv 10.1007/s12065-019-00220-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535302065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535302065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f1206250fa4949741f9da0c57627ff133007ce4e2cbaf0b5d660dd41a94f3cda3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmX5A5wicTaMtwTfQBVLpUpc4Gy5XqpUJS6eRCr8ehyC4MZp5vDemzcfIRcMrhhAc42MQ60oME0BOAe6PyAzdlNLqjRrDn930MfkBHEDUHNo5Izczm0f1im3n7ZvU1elWC26PmS3TYOvBgwZK9v5yg59oujstu3WoygHTEN2Ac_IUbRbDOc_85S8Pty_zJ_o8vlxMb9bUieY7mkcC3IF0UotdSNZ1N6CU03NmxiZEOULF2TgbmUjrJSva_BeMqtlFM5bcUoup9xdTu9DwN5sSoGunDRcCSVgBFBUfFK5nBBziGaX2zebPwwDM5IyEylTSJlvUmZfTGIyYRF365D_ov9xfQGTjGwW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535302065</pqid></control><display><type>article</type><title>Categorization of Intercloud users and auto-scaling of resources</title><source>SpringerLink Journals</source><creator>Jena, Tamanna ; Mohanty, J. R. ; Satapathy, Suresh Chandra</creator><creatorcontrib>Jena, Tamanna ; Mohanty, J. R. ; Satapathy, Suresh Chandra</creatorcontrib><description>Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity of the problem increases as requirement changes in terms of capacity, speed and time. To tide overfrequent changes in customer requirement and optimum utilization of available resources, a heuristic algorithm is proposed which will fit to the specification. The proposed algorithm is primarily divided into three phases, namely categorization of users, genetic algorithm-based resource allocation and earliest deadline first scheduling. The objective is to map the tasks to be executed to available VMs of the multi-cloud federation in order to have minimum makespan time and maximum customer satisfaction. After pr simulation on synthetic data, compared the simulation results with the existing scheduling algorithm. Results of the simulation confirm that the proposed categorization of the user in cloud domain can be beneficial in many folds and can address the existing challenges as per concerned metrics.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-019-00220-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Classification ; Cloud computing ; Control ; Customer satisfaction ; Engineering ; Genetic algorithms ; Heuristic methods ; Mathematical and Computational Engineering ; Mechatronics ; Optimization ; Resource allocation ; Robotics ; Simulation ; Special Issue ; Statistical Physics and Dynamical Systems ; Task scheduling ; Virtual environments</subject><ispartof>Evolutionary intelligence, 2021-06, Vol.14 (2), p.369-379</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f1206250fa4949741f9da0c57627ff133007ce4e2cbaf0b5d660dd41a94f3cda3</citedby><cites>FETCH-LOGICAL-c319t-f1206250fa4949741f9da0c57627ff133007ce4e2cbaf0b5d660dd41a94f3cda3</cites><orcidid>0000-0003-2703-7420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-019-00220-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-019-00220-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Jena, Tamanna</creatorcontrib><creatorcontrib>Mohanty, J. R.</creatorcontrib><creatorcontrib>Satapathy, Suresh Chandra</creatorcontrib><title>Categorization of Intercloud users and auto-scaling of resources</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity of the problem increases as requirement changes in terms of capacity, speed and time. To tide overfrequent changes in customer requirement and optimum utilization of available resources, a heuristic algorithm is proposed which will fit to the specification. The proposed algorithm is primarily divided into three phases, namely categorization of users, genetic algorithm-based resource allocation and earliest deadline first scheduling. The objective is to map the tasks to be executed to available VMs of the multi-cloud federation in order to have minimum makespan time and maximum customer satisfaction. After pr simulation on synthetic data, compared the simulation results with the existing scheduling algorithm. Results of the simulation confirm that the proposed categorization of the user in cloud domain can be beneficial in many folds and can address the existing challenges as per concerned metrics.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Classification</subject><subject>Cloud computing</subject><subject>Control</subject><subject>Customer satisfaction</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Robotics</subject><subject>Simulation</subject><subject>Special Issue</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Task scheduling</subject><subject>Virtual environments</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEmX5A5wicTaMtwTfQBVLpUpc4Gy5XqpUJS6eRCr8ehyC4MZp5vDemzcfIRcMrhhAc42MQ60oME0BOAe6PyAzdlNLqjRrDn930MfkBHEDUHNo5Izczm0f1im3n7ZvU1elWC26PmS3TYOvBgwZK9v5yg59oujstu3WoygHTEN2Ac_IUbRbDOc_85S8Pty_zJ_o8vlxMb9bUieY7mkcC3IF0UotdSNZ1N6CU03NmxiZEOULF2TgbmUjrJSva_BeMqtlFM5bcUoup9xdTu9DwN5sSoGunDRcCSVgBFBUfFK5nBBziGaX2zebPwwDM5IyEylTSJlvUmZfTGIyYRF365D_ov9xfQGTjGwW</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Jena, Tamanna</creator><creator>Mohanty, J. R.</creator><creator>Satapathy, Suresh Chandra</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2703-7420</orcidid></search><sort><creationdate>20210601</creationdate><title>Categorization of Intercloud users and auto-scaling of resources</title><author>Jena, Tamanna ; Mohanty, J. R. ; Satapathy, Suresh Chandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f1206250fa4949741f9da0c57627ff133007ce4e2cbaf0b5d660dd41a94f3cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Classification</topic><topic>Cloud computing</topic><topic>Control</topic><topic>Customer satisfaction</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Robotics</topic><topic>Simulation</topic><topic>Special Issue</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Task scheduling</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jena, Tamanna</creatorcontrib><creatorcontrib>Mohanty, J. R.</creatorcontrib><creatorcontrib>Satapathy, Suresh Chandra</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jena, Tamanna</au><au>Mohanty, J. R.</au><au>Satapathy, Suresh Chandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Categorization of Intercloud users and auto-scaling of resources</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>369</spage><epage>379</epage><pages>369-379</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Optimal allocation of resources in Intercloud computing is NP-complete program. Constraints are many and configuration of each cloud varies from each other. The mapping of the tasks to available virtual machines is challenging. In real life scenarios customer requirements may change. The complexity of the problem increases as requirement changes in terms of capacity, speed and time. To tide overfrequent changes in customer requirement and optimum utilization of available resources, a heuristic algorithm is proposed which will fit to the specification. The proposed algorithm is primarily divided into three phases, namely categorization of users, genetic algorithm-based resource allocation and earliest deadline first scheduling. The objective is to map the tasks to be executed to available VMs of the multi-cloud federation in order to have minimum makespan time and maximum customer satisfaction. After pr simulation on synthetic data, compared the simulation results with the existing scheduling algorithm. Results of the simulation confirm that the proposed categorization of the user in cloud domain can be beneficial in many folds and can address the existing challenges as per concerned metrics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-019-00220-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2703-7420</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2021-06, Vol.14 (2), p.369-379
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_2535302065
source SpringerLink Journals
subjects Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Classification
Cloud computing
Control
Customer satisfaction
Engineering
Genetic algorithms
Heuristic methods
Mathematical and Computational Engineering
Mechatronics
Optimization
Resource allocation
Robotics
Simulation
Special Issue
Statistical Physics and Dynamical Systems
Task scheduling
Virtual environments
title Categorization of Intercloud users and auto-scaling of resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Categorization%20of%20Intercloud%20users%20and%20auto-scaling%20of%20resources&rft.jtitle=Evolutionary%20intelligence&rft.au=Jena,%20Tamanna&rft.date=2021-06-01&rft.volume=14&rft.issue=2&rft.spage=369&rft.epage=379&rft.pages=369-379&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-019-00220-x&rft_dat=%3Cproquest_cross%3E2535302065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535302065&rft_id=info:pmid/&rfr_iscdi=true