Lopsided scaled HSS preconditioner for steady-state space-fractional diffusion equations

For the discrete linear system resulting from certain steady-state space-fractional diffusion equations, we construct a lopsided scaled HSS (LSHSS) iteration method and establish its convergence theory. From the LSHSS, we obtain the corresponding matrix splitting preconditioner. By further replacing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcolo 2021-06, Vol.58 (2), Article 26
Hauptverfasser: Chen, Fang, Li, Tian-Yi, Muratova, Galina V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Calcolo
container_volume 58
creator Chen, Fang
Li, Tian-Yi
Muratova, Galina V.
description For the discrete linear system resulting from certain steady-state space-fractional diffusion equations, we construct a lopsided scaled HSS (LSHSS) iteration method and establish its convergence theory. From the LSHSS, we obtain the corresponding matrix splitting preconditioner. By further replacing the involved Toeplitz matrix with certain circulant matrix, we construct a fast LSHSS (FLSHSS) preconditioner in order to accelerate the convergence rates of the Krylov subspace iteration methods. Theoretical analyses and numerical experiments show good performance of the FLSHSS preconditioning.
doi_str_mv 10.1007/s10092-021-00419-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535301010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535301010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1eecb264ed5e9eff9a8643656be6b3a040b8b5ff8c9be1edd4bf6767895ab24e3</originalsourceid><addsrcrecordid>eNp9UMtKA0EQHETBGP0BTwueR-ed3aMENULAQxS8DfPokQ0xu5nePfj3TlzBmzR0dTdVRVOEXHN2yxlb3GHpjaBMcMqY4g1VJ2TGuTBUK6lOyYwxVlNmhDonF4jbsmpVqxl5X3c9thFihcHtCqw2m6rPELp9bIe220OuUpcrHMDFL4qDG6DC3gWgKbtwZLhdFduURixzBYfRHY94Sc6S2yFc_eKcvD0-vC5XdP3y9Ly8X9MgeTNQDhC8MAqihgZSalxtlDTaeDBeOqaYr71OqQ6NBw4xKp_MwizqRjsvFMg5uZl8-9wdRsDBbrsxl6fQCi21ZLxUYYmJFXKHmCHZPrefLn9ZzuwxQTslaEuC9idBq4pITiIs5P0H5D_rf1TfoKJ1dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535301010</pqid></control><display><type>article</type><title>Lopsided scaled HSS preconditioner for steady-state space-fractional diffusion equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Fang ; Li, Tian-Yi ; Muratova, Galina V.</creator><creatorcontrib>Chen, Fang ; Li, Tian-Yi ; Muratova, Galina V.</creatorcontrib><description>For the discrete linear system resulting from certain steady-state space-fractional diffusion equations, we construct a lopsided scaled HSS (LSHSS) iteration method and establish its convergence theory. From the LSHSS, we obtain the corresponding matrix splitting preconditioner. By further replacing the involved Toeplitz matrix with certain circulant matrix, we construct a fast LSHSS (FLSHSS) preconditioner in order to accelerate the convergence rates of the Krylov subspace iteration methods. Theoretical analyses and numerical experiments show good performance of the FLSHSS preconditioning.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-021-00419-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Convergence ; Iterative methods ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical methods ; Preconditioning ; Steady state ; Theory of Computation</subject><ispartof>Calcolo, 2021-06, Vol.58 (2), Article 26</ispartof><rights>Istituto di Informatica e Telematica (IIT) 2021</rights><rights>Istituto di Informatica e Telematica (IIT) 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1eecb264ed5e9eff9a8643656be6b3a040b8b5ff8c9be1edd4bf6767895ab24e3</citedby><cites>FETCH-LOGICAL-c319t-1eecb264ed5e9eff9a8643656be6b3a040b8b5ff8c9be1edd4bf6767895ab24e3</cites><orcidid>0000-0002-6894-5428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10092-021-00419-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10092-021-00419-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Li, Tian-Yi</creatorcontrib><creatorcontrib>Muratova, Galina V.</creatorcontrib><title>Lopsided scaled HSS preconditioner for steady-state space-fractional diffusion equations</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>For the discrete linear system resulting from certain steady-state space-fractional diffusion equations, we construct a lopsided scaled HSS (LSHSS) iteration method and establish its convergence theory. From the LSHSS, we obtain the corresponding matrix splitting preconditioner. By further replacing the involved Toeplitz matrix with certain circulant matrix, we construct a fast LSHSS (FLSHSS) preconditioner in order to accelerate the convergence rates of the Krylov subspace iteration methods. Theoretical analyses and numerical experiments show good performance of the FLSHSS preconditioning.</description><subject>Convergence</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical methods</subject><subject>Preconditioning</subject><subject>Steady state</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKA0EQHETBGP0BTwueR-ed3aMENULAQxS8DfPokQ0xu5nePfj3TlzBmzR0dTdVRVOEXHN2yxlb3GHpjaBMcMqY4g1VJ2TGuTBUK6lOyYwxVlNmhDonF4jbsmpVqxl5X3c9thFihcHtCqw2m6rPELp9bIe220OuUpcrHMDFL4qDG6DC3gWgKbtwZLhdFduURixzBYfRHY94Sc6S2yFc_eKcvD0-vC5XdP3y9Ly8X9MgeTNQDhC8MAqihgZSalxtlDTaeDBeOqaYr71OqQ6NBw4xKp_MwizqRjsvFMg5uZl8-9wdRsDBbrsxl6fQCi21ZLxUYYmJFXKHmCHZPrefLn9ZzuwxQTslaEuC9idBq4pITiIs5P0H5D_rf1TfoKJ1dw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Chen, Fang</creator><creator>Li, Tian-Yi</creator><creator>Muratova, Galina V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6894-5428</orcidid></search><sort><creationdate>20210601</creationdate><title>Lopsided scaled HSS preconditioner for steady-state space-fractional diffusion equations</title><author>Chen, Fang ; Li, Tian-Yi ; Muratova, Galina V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1eecb264ed5e9eff9a8643656be6b3a040b8b5ff8c9be1edd4bf6767895ab24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convergence</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical methods</topic><topic>Preconditioning</topic><topic>Steady state</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Li, Tian-Yi</creatorcontrib><creatorcontrib>Muratova, Galina V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fang</au><au>Li, Tian-Yi</au><au>Muratova, Galina V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lopsided scaled HSS preconditioner for steady-state space-fractional diffusion equations</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>58</volume><issue>2</issue><artnum>26</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>For the discrete linear system resulting from certain steady-state space-fractional diffusion equations, we construct a lopsided scaled HSS (LSHSS) iteration method and establish its convergence theory. From the LSHSS, we obtain the corresponding matrix splitting preconditioner. By further replacing the involved Toeplitz matrix with certain circulant matrix, we construct a fast LSHSS (FLSHSS) preconditioner in order to accelerate the convergence rates of the Krylov subspace iteration methods. Theoretical analyses and numerical experiments show good performance of the FLSHSS preconditioning.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-021-00419-4</doi><orcidid>https://orcid.org/0000-0002-6894-5428</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-0624
ispartof Calcolo, 2021-06, Vol.58 (2), Article 26
issn 0008-0624
1126-5434
language eng
recordid cdi_proquest_journals_2535301010
source Springer Nature - Complete Springer Journals
subjects Convergence
Iterative methods
Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical methods
Preconditioning
Steady state
Theory of Computation
title Lopsided scaled HSS preconditioner for steady-state space-fractional diffusion equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lopsided%20scaled%20HSS%20preconditioner%20for%20steady-state%20space-fractional%20diffusion%20equations&rft.jtitle=Calcolo&rft.au=Chen,%20Fang&rft.date=2021-06-01&rft.volume=58&rft.issue=2&rft.artnum=26&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-021-00419-4&rft_dat=%3Cproquest_cross%3E2535301010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535301010&rft_id=info:pmid/&rfr_iscdi=true