“Restricted Geometry” Effect on Phase Transitions in KDP, ADP, and CDP Nanocrystals

The dielectric properties of composite materials prepared by the embedding of ferroelectrics potassium dihydrogen phosphate (KDP), cesium dihydrophosphate (CDP), as well as antiferroelectric ammonium dihydrogen phosphate (ADP) into porous glass matrices with an average size of through pores of 7, 46...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2019-11, Vol.9 (11), p.593
Hauptverfasser: Tarnavich, Vladislav V., Sidorkin, Alexander S., Korotkova, Tatiana N., Rysiakiewicz-Pasek, Ewa, Korotkov, Leonid N., Popravko, Nadezhda G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 593
container_title Crystals (Basel)
container_volume 9
creator Tarnavich, Vladislav V.
Sidorkin, Alexander S.
Korotkova, Tatiana N.
Rysiakiewicz-Pasek, Ewa
Korotkov, Leonid N.
Popravko, Nadezhda G.
description The dielectric properties of composite materials prepared by the embedding of ferroelectrics potassium dihydrogen phosphate (KDP), cesium dihydrophosphate (CDP), as well as antiferroelectric ammonium dihydrogen phosphate (ADP) into porous glass matrices with an average size of through pores of 7, 46, and 320 nm have been studied. It was found that an increase occurred in the phase transitions temperature (TC) for embedded particles in comparison with corresponding bulk materials. Some possible mechanisms of influence of “restricted geometry” on the Curie temperature are discussed. Estimates of TC shifting as a result of the “pressure effect” caused by elastic stresses in embedded particles as well as the result of bias electric field influence arising due to the piezoelectric effect are made. The possibility of using the tunneling Ising model to explain the experimental results is discussed.
doi_str_mv 10.3390/cryst9110593
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535230861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535230861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-5c2e1bbf2f52ef4fc6e898803959f224b0a1006c9d71727523a66d3892cd30423</originalsourceid><addsrcrecordid>eNpNUMFOAjEUbIwmEuTmBzTxyupru91ujwQQjUSJwXjclG4bl0iLbTlw40P05_gSF_HAO7yZw-S9mUHomsAtYxLudNjGJAkBLtkZ6lAQLMsZp-cn_BL1YlxCO6IAIUgHve93368mptDoZGo8MX5lUtjudz94bK3RCXuHZx8qGjwPysUmNd5F3Dj8NJr18eCwlKvxcDTDz8r5PxfqM16hC9uC6f1jF73dj-fDh2z6MnkcDqaZZkBSxjU1ZLGw1HJqbG51YUpZlsAkl5bSfAGKABRa1oIIKjhlqihqVkqqawY5ZV10c7y7Dv5r0wapln4TXPuyorxNzKAsSKvqH1U6-BiDsdU6NCsVthWB6tBeddoe-wUgOWJh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535230861</pqid></control><display><type>article</type><title>“Restricted Geometry” Effect on Phase Transitions in KDP, ADP, and CDP Nanocrystals</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tarnavich, Vladislav V. ; Sidorkin, Alexander S. ; Korotkova, Tatiana N. ; Rysiakiewicz-Pasek, Ewa ; Korotkov, Leonid N. ; Popravko, Nadezhda G.</creator><creatorcontrib>Tarnavich, Vladislav V. ; Sidorkin, Alexander S. ; Korotkova, Tatiana N. ; Rysiakiewicz-Pasek, Ewa ; Korotkov, Leonid N. ; Popravko, Nadezhda G.</creatorcontrib><description>The dielectric properties of composite materials prepared by the embedding of ferroelectrics potassium dihydrogen phosphate (KDP), cesium dihydrophosphate (CDP), as well as antiferroelectric ammonium dihydrogen phosphate (ADP) into porous glass matrices with an average size of through pores of 7, 46, and 320 nm have been studied. It was found that an increase occurred in the phase transitions temperature (TC) for embedded particles in comparison with corresponding bulk materials. Some possible mechanisms of influence of “restricted geometry” on the Curie temperature are discussed. Estimates of TC shifting as a result of the “pressure effect” caused by elastic stresses in embedded particles as well as the result of bias electric field influence arising due to the piezoelectric effect are made. The possibility of using the tunneling Ising model to explain the experimental results is discussed.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst9110593</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ammonium dihydrogen phosphate ; Antiferroelectricity ; Cesium ; Composite materials ; Crystals ; Curie temperature ; Dielectric properties ; Electric fields ; Embedding ; Ferroelectric materials ; Geometry ; Ising model ; KDP crystals ; Nanocrystals ; Phase transitions ; Piezoelectricity ; Potassium ; Potassium phosphates ; Pressure effects ; Temperature</subject><ispartof>Crystals (Basel), 2019-11, Vol.9 (11), p.593</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-5c2e1bbf2f52ef4fc6e898803959f224b0a1006c9d71727523a66d3892cd30423</citedby><cites>FETCH-LOGICAL-c301t-5c2e1bbf2f52ef4fc6e898803959f224b0a1006c9d71727523a66d3892cd30423</cites><orcidid>0000-0002-0830-272X ; 0000-0002-5350-5841 ; 0000-0003-4481-2046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Tarnavich, Vladislav V.</creatorcontrib><creatorcontrib>Sidorkin, Alexander S.</creatorcontrib><creatorcontrib>Korotkova, Tatiana N.</creatorcontrib><creatorcontrib>Rysiakiewicz-Pasek, Ewa</creatorcontrib><creatorcontrib>Korotkov, Leonid N.</creatorcontrib><creatorcontrib>Popravko, Nadezhda G.</creatorcontrib><title>“Restricted Geometry” Effect on Phase Transitions in KDP, ADP, and CDP Nanocrystals</title><title>Crystals (Basel)</title><description>The dielectric properties of composite materials prepared by the embedding of ferroelectrics potassium dihydrogen phosphate (KDP), cesium dihydrophosphate (CDP), as well as antiferroelectric ammonium dihydrogen phosphate (ADP) into porous glass matrices with an average size of through pores of 7, 46, and 320 nm have been studied. It was found that an increase occurred in the phase transitions temperature (TC) for embedded particles in comparison with corresponding bulk materials. Some possible mechanisms of influence of “restricted geometry” on the Curie temperature are discussed. Estimates of TC shifting as a result of the “pressure effect” caused by elastic stresses in embedded particles as well as the result of bias electric field influence arising due to the piezoelectric effect are made. The possibility of using the tunneling Ising model to explain the experimental results is discussed.</description><subject>Ammonium dihydrogen phosphate</subject><subject>Antiferroelectricity</subject><subject>Cesium</subject><subject>Composite materials</subject><subject>Crystals</subject><subject>Curie temperature</subject><subject>Dielectric properties</subject><subject>Electric fields</subject><subject>Embedding</subject><subject>Ferroelectric materials</subject><subject>Geometry</subject><subject>Ising model</subject><subject>KDP crystals</subject><subject>Nanocrystals</subject><subject>Phase transitions</subject><subject>Piezoelectricity</subject><subject>Potassium</subject><subject>Potassium phosphates</subject><subject>Pressure effects</subject><subject>Temperature</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUMFOAjEUbIwmEuTmBzTxyupru91ujwQQjUSJwXjclG4bl0iLbTlw40P05_gSF_HAO7yZw-S9mUHomsAtYxLudNjGJAkBLtkZ6lAQLMsZp-cn_BL1YlxCO6IAIUgHve93368mptDoZGo8MX5lUtjudz94bK3RCXuHZx8qGjwPysUmNd5F3Dj8NJr18eCwlKvxcDTDz8r5PxfqM16hC9uC6f1jF73dj-fDh2z6MnkcDqaZZkBSxjU1ZLGw1HJqbG51YUpZlsAkl5bSfAGKABRa1oIIKjhlqihqVkqqawY5ZV10c7y7Dv5r0wapln4TXPuyorxNzKAsSKvqH1U6-BiDsdU6NCsVthWB6tBeddoe-wUgOWJh</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Tarnavich, Vladislav V.</creator><creator>Sidorkin, Alexander S.</creator><creator>Korotkova, Tatiana N.</creator><creator>Rysiakiewicz-Pasek, Ewa</creator><creator>Korotkov, Leonid N.</creator><creator>Popravko, Nadezhda G.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0830-272X</orcidid><orcidid>https://orcid.org/0000-0002-5350-5841</orcidid><orcidid>https://orcid.org/0000-0003-4481-2046</orcidid></search><sort><creationdate>20191101</creationdate><title>“Restricted Geometry” Effect on Phase Transitions in KDP, ADP, and CDP Nanocrystals</title><author>Tarnavich, Vladislav V. ; Sidorkin, Alexander S. ; Korotkova, Tatiana N. ; Rysiakiewicz-Pasek, Ewa ; Korotkov, Leonid N. ; Popravko, Nadezhda G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-5c2e1bbf2f52ef4fc6e898803959f224b0a1006c9d71727523a66d3892cd30423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonium dihydrogen phosphate</topic><topic>Antiferroelectricity</topic><topic>Cesium</topic><topic>Composite materials</topic><topic>Crystals</topic><topic>Curie temperature</topic><topic>Dielectric properties</topic><topic>Electric fields</topic><topic>Embedding</topic><topic>Ferroelectric materials</topic><topic>Geometry</topic><topic>Ising model</topic><topic>KDP crystals</topic><topic>Nanocrystals</topic><topic>Phase transitions</topic><topic>Piezoelectricity</topic><topic>Potassium</topic><topic>Potassium phosphates</topic><topic>Pressure effects</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarnavich, Vladislav V.</creatorcontrib><creatorcontrib>Sidorkin, Alexander S.</creatorcontrib><creatorcontrib>Korotkova, Tatiana N.</creatorcontrib><creatorcontrib>Rysiakiewicz-Pasek, Ewa</creatorcontrib><creatorcontrib>Korotkov, Leonid N.</creatorcontrib><creatorcontrib>Popravko, Nadezhda G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarnavich, Vladislav V.</au><au>Sidorkin, Alexander S.</au><au>Korotkova, Tatiana N.</au><au>Rysiakiewicz-Pasek, Ewa</au><au>Korotkov, Leonid N.</au><au>Popravko, Nadezhda G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Restricted Geometry” Effect on Phase Transitions in KDP, ADP, and CDP Nanocrystals</atitle><jtitle>Crystals (Basel)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>593</spage><pages>593-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>The dielectric properties of composite materials prepared by the embedding of ferroelectrics potassium dihydrogen phosphate (KDP), cesium dihydrophosphate (CDP), as well as antiferroelectric ammonium dihydrogen phosphate (ADP) into porous glass matrices with an average size of through pores of 7, 46, and 320 nm have been studied. It was found that an increase occurred in the phase transitions temperature (TC) for embedded particles in comparison with corresponding bulk materials. Some possible mechanisms of influence of “restricted geometry” on the Curie temperature are discussed. Estimates of TC shifting as a result of the “pressure effect” caused by elastic stresses in embedded particles as well as the result of bias electric field influence arising due to the piezoelectric effect are made. The possibility of using the tunneling Ising model to explain the experimental results is discussed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst9110593</doi><orcidid>https://orcid.org/0000-0002-0830-272X</orcidid><orcidid>https://orcid.org/0000-0002-5350-5841</orcidid><orcidid>https://orcid.org/0000-0003-4481-2046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2019-11, Vol.9 (11), p.593
issn 2073-4352
2073-4352
language eng
recordid cdi_proquest_journals_2535230861
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Ammonium dihydrogen phosphate
Antiferroelectricity
Cesium
Composite materials
Crystals
Curie temperature
Dielectric properties
Electric fields
Embedding
Ferroelectric materials
Geometry
Ising model
KDP crystals
Nanocrystals
Phase transitions
Piezoelectricity
Potassium
Potassium phosphates
Pressure effects
Temperature
title “Restricted Geometry” Effect on Phase Transitions in KDP, ADP, and CDP Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CRestricted%20Geometry%E2%80%9D%20Effect%20on%20Phase%20Transitions%20in%20KDP,%20ADP,%20and%20CDP%20Nanocrystals&rft.jtitle=Crystals%20(Basel)&rft.au=Tarnavich,%20Vladislav%20V.&rft.date=2019-11-01&rft.volume=9&rft.issue=11&rft.spage=593&rft.pages=593-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst9110593&rft_dat=%3Cproquest_cross%3E2535230861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535230861&rft_id=info:pmid/&rfr_iscdi=true