Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide

Water electrolysis driven by renewable energy can produce clean hydrogen, but its efficiency remains low, in part because of slow kinetics at the anode for the oxygen evolution reaction (OER). Learning from the most active catalysts for the OER, iridium oxides, would be the key to the development an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry frontiers 2021-06, Vol.8 (11), p.29-2917
Hauptverfasser: Naito, Takahiro, Shinagawa, Tatsuya, Nishimoto, Takeshi, Takanabe, Kazuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2917
container_issue 11
container_start_page 29
container_title Inorganic chemistry frontiers
container_volume 8
creator Naito, Takahiro
Shinagawa, Tatsuya
Nishimoto, Takeshi
Takanabe, Kazuhiro
description Water electrolysis driven by renewable energy can produce clean hydrogen, but its efficiency remains low, in part because of slow kinetics at the anode for the oxygen evolution reaction (OER). Learning from the most active catalysts for the OER, iridium oxides, would be the key to the development and establishment of design guidelines for active and stable OER catalysts. This article reviews in situ or operando spectroscopic and advanced computational studies in the past decade concerning the OER over iridium oxide for both the oxidation of water molecules and hydroxide ions. By collectively reviewing the reported findings, we illustrate the plausible OER catalytic cycles including the dissolution of iridium during the reaction, which at the same time disclosed discrepancies in the proposed mechanisms. Such discrepancies are thought to originate from variations in the experimental conditions employed in those studies, calling for comprehensive and systematic in situ or operando studies in the future. Toward the end, we discuss a recent approach for improving the activity and stability of OER catalysts. Recent spectroscopic and computational studies concerning the oxygen evolution reaction over iridium oxides are reviewed to provide the state-of-the-art understanding of its reaction mechanism.
doi_str_mv 10.1039/d0qi01465f
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2535044750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535044750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-476d7d6ce847e9fe8df401f647162e86e6a9ee20ed77e244ccd726e900d816043</originalsourceid><addsrcrecordid>eNpNkM1LwzAYh4MoOOYu3oWAN6H6ps1He5TpdDAQRcFbCcnbmbGmW9IO999bV1FP7-_wvF8PIecMrhlkxY2FrQPGpaiOyCgFkSZMiOz4Xz4lkxhXAMAYByZhRN5f0KBvqbY77Q1G6jztvMUQW-2t80vafO6X6CnumnXXusbTgNocQo3mQ3sX60ibHQbqgrOuq_sOZ_GMnFR6HXHyU8fkbXb_On1MFk8P8-ntIjFZnrUJV9IqKw3mXGFRYW6r_rJKcsVkirlEqQvEFNAqhSnnxliVSiwAbN4_wLMxuRzmbkKz7TC25arpgu9XlqnIBHCuBPTU1UCZ0MQYsCo3wdU67EsG5be88g6e5wd5sx6-GOAQzS_3Jzf7AoJobEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535044750</pqid></control><display><type>article</type><title>Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide</title><source>Royal Society Of Chemistry Journals</source><creator>Naito, Takahiro ; Shinagawa, Tatsuya ; Nishimoto, Takeshi ; Takanabe, Kazuhiro</creator><creatorcontrib>Naito, Takahiro ; Shinagawa, Tatsuya ; Nishimoto, Takeshi ; Takanabe, Kazuhiro</creatorcontrib><description>Water electrolysis driven by renewable energy can produce clean hydrogen, but its efficiency remains low, in part because of slow kinetics at the anode for the oxygen evolution reaction (OER). Learning from the most active catalysts for the OER, iridium oxides, would be the key to the development and establishment of design guidelines for active and stable OER catalysts. This article reviews in situ or operando spectroscopic and advanced computational studies in the past decade concerning the OER over iridium oxide for both the oxidation of water molecules and hydroxide ions. By collectively reviewing the reported findings, we illustrate the plausible OER catalytic cycles including the dissolution of iridium during the reaction, which at the same time disclosed discrepancies in the proposed mechanisms. Such discrepancies are thought to originate from variations in the experimental conditions employed in those studies, calling for comprehensive and systematic in situ or operando studies in the future. Toward the end, we discuss a recent approach for improving the activity and stability of OER catalysts. Recent spectroscopic and computational studies concerning the oxygen evolution reaction over iridium oxides are reviewed to provide the state-of-the-art understanding of its reaction mechanism.</description><identifier>ISSN: 2052-1553</identifier><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d0qi01465f</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Catalysts ; Clean energy ; Electrolysis ; Inorganic chemistry ; Iridium ; Oxidation ; Oxygen evolution reactions ; Reaction mechanisms ; Water chemistry</subject><ispartof>Inorganic chemistry frontiers, 2021-06, Vol.8 (11), p.29-2917</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-476d7d6ce847e9fe8df401f647162e86e6a9ee20ed77e244ccd726e900d816043</citedby><cites>FETCH-LOGICAL-c383t-476d7d6ce847e9fe8df401f647162e86e6a9ee20ed77e244ccd726e900d816043</cites><orcidid>0000-0001-8962-8790 ; 0000-0002-5240-7342 ; 0000-0001-5374-9451 ; 0000-0003-3063-8489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Naito, Takahiro</creatorcontrib><creatorcontrib>Shinagawa, Tatsuya</creatorcontrib><creatorcontrib>Nishimoto, Takeshi</creatorcontrib><creatorcontrib>Takanabe, Kazuhiro</creatorcontrib><title>Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide</title><title>Inorganic chemistry frontiers</title><description>Water electrolysis driven by renewable energy can produce clean hydrogen, but its efficiency remains low, in part because of slow kinetics at the anode for the oxygen evolution reaction (OER). Learning from the most active catalysts for the OER, iridium oxides, would be the key to the development and establishment of design guidelines for active and stable OER catalysts. This article reviews in situ or operando spectroscopic and advanced computational studies in the past decade concerning the OER over iridium oxide for both the oxidation of water molecules and hydroxide ions. By collectively reviewing the reported findings, we illustrate the plausible OER catalytic cycles including the dissolution of iridium during the reaction, which at the same time disclosed discrepancies in the proposed mechanisms. Such discrepancies are thought to originate from variations in the experimental conditions employed in those studies, calling for comprehensive and systematic in situ or operando studies in the future. Toward the end, we discuss a recent approach for improving the activity and stability of OER catalysts. Recent spectroscopic and computational studies concerning the oxygen evolution reaction over iridium oxides are reviewed to provide the state-of-the-art understanding of its reaction mechanism.</description><subject>Catalysts</subject><subject>Clean energy</subject><subject>Electrolysis</subject><subject>Inorganic chemistry</subject><subject>Iridium</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Reaction mechanisms</subject><subject>Water chemistry</subject><issn>2052-1553</issn><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LwzAYh4MoOOYu3oWAN6H6ps1He5TpdDAQRcFbCcnbmbGmW9IO999bV1FP7-_wvF8PIecMrhlkxY2FrQPGpaiOyCgFkSZMiOz4Xz4lkxhXAMAYByZhRN5f0KBvqbY77Q1G6jztvMUQW-2t80vafO6X6CnumnXXusbTgNocQo3mQ3sX60ibHQbqgrOuq_sOZ_GMnFR6HXHyU8fkbXb_On1MFk8P8-ntIjFZnrUJV9IqKw3mXGFRYW6r_rJKcsVkirlEqQvEFNAqhSnnxliVSiwAbN4_wLMxuRzmbkKz7TC25arpgu9XlqnIBHCuBPTU1UCZ0MQYsCo3wdU67EsG5be88g6e5wd5sx6-GOAQzS_3Jzf7AoJobEQ</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Naito, Takahiro</creator><creator>Shinagawa, Tatsuya</creator><creator>Nishimoto, Takeshi</creator><creator>Takanabe, Kazuhiro</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8962-8790</orcidid><orcidid>https://orcid.org/0000-0002-5240-7342</orcidid><orcidid>https://orcid.org/0000-0001-5374-9451</orcidid><orcidid>https://orcid.org/0000-0003-3063-8489</orcidid></search><sort><creationdate>20210607</creationdate><title>Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide</title><author>Naito, Takahiro ; Shinagawa, Tatsuya ; Nishimoto, Takeshi ; Takanabe, Kazuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-476d7d6ce847e9fe8df401f647162e86e6a9ee20ed77e244ccd726e900d816043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysts</topic><topic>Clean energy</topic><topic>Electrolysis</topic><topic>Inorganic chemistry</topic><topic>Iridium</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Reaction mechanisms</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naito, Takahiro</creatorcontrib><creatorcontrib>Shinagawa, Tatsuya</creatorcontrib><creatorcontrib>Nishimoto, Takeshi</creatorcontrib><creatorcontrib>Takanabe, Kazuhiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naito, Takahiro</au><au>Shinagawa, Tatsuya</au><au>Nishimoto, Takeshi</au><au>Takanabe, Kazuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2021-06-07</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>29</spage><epage>2917</epage><pages>29-2917</pages><issn>2052-1553</issn><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Water electrolysis driven by renewable energy can produce clean hydrogen, but its efficiency remains low, in part because of slow kinetics at the anode for the oxygen evolution reaction (OER). Learning from the most active catalysts for the OER, iridium oxides, would be the key to the development and establishment of design guidelines for active and stable OER catalysts. This article reviews in situ or operando spectroscopic and advanced computational studies in the past decade concerning the OER over iridium oxide for both the oxidation of water molecules and hydroxide ions. By collectively reviewing the reported findings, we illustrate the plausible OER catalytic cycles including the dissolution of iridium during the reaction, which at the same time disclosed discrepancies in the proposed mechanisms. Such discrepancies are thought to originate from variations in the experimental conditions employed in those studies, calling for comprehensive and systematic in situ or operando studies in the future. Toward the end, we discuss a recent approach for improving the activity and stability of OER catalysts. Recent spectroscopic and computational studies concerning the oxygen evolution reaction over iridium oxides are reviewed to provide the state-of-the-art understanding of its reaction mechanism.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0qi01465f</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8962-8790</orcidid><orcidid>https://orcid.org/0000-0002-5240-7342</orcidid><orcidid>https://orcid.org/0000-0001-5374-9451</orcidid><orcidid>https://orcid.org/0000-0003-3063-8489</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-1553
ispartof Inorganic chemistry frontiers, 2021-06, Vol.8 (11), p.29-2917
issn 2052-1553
2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2535044750
source Royal Society Of Chemistry Journals
subjects Catalysts
Clean energy
Electrolysis
Inorganic chemistry
Iridium
Oxidation
Oxygen evolution reactions
Reaction mechanisms
Water chemistry
title Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20understanding%20oxygen%20evolution%20reaction%20mechanisms%20over%20iridium%20oxide&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Naito,%20Takahiro&rft.date=2021-06-07&rft.volume=8&rft.issue=11&rft.spage=29&rft.epage=2917&rft.pages=29-2917&rft.issn=2052-1553&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d0qi01465f&rft_dat=%3Cproquest_rsc_p%3E2535044750%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535044750&rft_id=info:pmid/&rfr_iscdi=true