Neural networks for increased accuracy of allergenic pollen monitoring

Monitoring of airborne pollen concentrations provides an important source of information for the globally increasing number of hay fever patients. Airborne pollen is traditionally counted under the microscope, but with the latest developments in image recognition methods, automating this process has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-05, Vol.11 (1), p.11357-11357, Article 11357
Hauptverfasser: Polling, Marcel, Li, Chen, Cao, Lu, Verbeek, Fons, de Weger, Letty A., Belmonte, Jordina, De Linares, Concepción, Willemse, Joost, de Boer, Hugo, Gravendeel, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11357
container_issue 1
container_start_page 11357
container_title Scientific reports
container_volume 11
creator Polling, Marcel
Li, Chen
Cao, Lu
Verbeek, Fons
de Weger, Letty A.
Belmonte, Jordina
De Linares, Concepción
Willemse, Joost
de Boer, Hugo
Gravendeel, Barbara
description Monitoring of airborne pollen concentrations provides an important source of information for the globally increasing number of hay fever patients. Airborne pollen is traditionally counted under the microscope, but with the latest developments in image recognition methods, automating this process has become feasible. A challenge that persists, however, is that many pollen grains cannot be distinguished beyond the genus or family level using a microscope. Here, we assess the use of Convolutional Neural Networks (CNNs) to increase taxonomic accuracy for airborne pollen. As a case study we use the nettle family (Urticaceae), which contains two main genera ( Urtica and Parietaria ) common in European landscapes which pollen cannot be separated by trained specialists. While pollen from Urtica species has very low allergenic relevance, pollen from several species of Parietaria is severely allergenic. We collect pollen from both fresh as well as from herbarium specimens and use these without the often used acetolysis step to train the CNN model. The models show that unacetolyzed Urticaceae pollen grains can be distinguished with > 98% accuracy. We then apply our model on before unseen Urticaceae pollen collected from aerobiological samples and show that the genera can be confidently distinguished, despite the more challenging input images that are often overlain by debris. Our method can also be applied to other pollen families in the future and will thus help to make allergenic pollen monitoring more specific.
doi_str_mv 10.1038/s41598-021-90433-x
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2534804612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4f1f306badec4094858a3e2ccc023952</doaj_id><sourcerecordid>2534804612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-1afb11d24f871997062d26cf8a08a31fd559fd5b45248c458bdb505eb9d7d0c43</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCIVqV_gAuRuCBVAX9m7QsSWlGoVMEFzpZjjxcvWXuxHdr--zqbUigHhA_2yDPvvfH4Nc1zjF5jRMWbzDCXokMEdxIxSrvrR80xQYx3hBLy-I_4qDnNeYvq4kQyLJ82R5QhLleMHjfnn2BKemwDlKuYvufWxdT6YBLoDLbVxtS0uWmja_U4QtpA8KbdxxqHdheDLzH5sHnWPHF6zHB6d540X8_ff1l_7C4_f7hYv7vsDGe4dFi7AWNLmBMrLOUK9cSS3jihkdAUO8u5rNvAOGHCMC4GO3DEYZB2ZZFh9KS5WHht1Fu1T36n042K2qvDRUwbpVPxZgTFHHYU9YO2YBiSTPAqAcQYgwiVnFSutwvXfhp2YA2EUifxgPRhJvhvahN_KoH7XvRzMy8WApN8Lj6oEJNWGAlOlMQYzxKv7iRS_DFBLmrns4Fx1AHilBXhlIv6GWQme_lX6TZOKdRhzlVMINYfCMkvyZhzAnffLkZq9oVafKGqL9TBF-q6gsQCuoIhumw8BAP3wOqLnkuCCK8RRmtfdPExrOMUSoWe_T-0VtOlOu9nU0D6_YZ_tHcL0FfY8A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534804612</pqid></control><display><type>article</type><title>Neural networks for increased accuracy of allergenic pollen monitoring</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Polling, Marcel ; Li, Chen ; Cao, Lu ; Verbeek, Fons ; de Weger, Letty A. ; Belmonte, Jordina ; De Linares, Concepción ; Willemse, Joost ; de Boer, Hugo ; Gravendeel, Barbara</creator><creatorcontrib>Polling, Marcel ; Li, Chen ; Cao, Lu ; Verbeek, Fons ; de Weger, Letty A. ; Belmonte, Jordina ; De Linares, Concepción ; Willemse, Joost ; de Boer, Hugo ; Gravendeel, Barbara</creatorcontrib><description>Monitoring of airborne pollen concentrations provides an important source of information for the globally increasing number of hay fever patients. Airborne pollen is traditionally counted under the microscope, but with the latest developments in image recognition methods, automating this process has become feasible. A challenge that persists, however, is that many pollen grains cannot be distinguished beyond the genus or family level using a microscope. Here, we assess the use of Convolutional Neural Networks (CNNs) to increase taxonomic accuracy for airborne pollen. As a case study we use the nettle family (Urticaceae), which contains two main genera ( Urtica and Parietaria ) common in European landscapes which pollen cannot be separated by trained specialists. While pollen from Urtica species has very low allergenic relevance, pollen from several species of Parietaria is severely allergenic. We collect pollen from both fresh as well as from herbarium specimens and use these without the often used acetolysis step to train the CNN model. The models show that unacetolyzed Urticaceae pollen grains can be distinguished with &gt; 98% accuracy. We then apply our model on before unseen Urticaceae pollen collected from aerobiological samples and show that the genera can be confidently distinguished, despite the more challenging input images that are often overlain by debris. Our method can also be applied to other pollen families in the future and will thus help to make allergenic pollen monitoring more specific.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-90433-x</identifier><identifier>PMID: 34059743</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/328/2240 ; 631/449 ; 639/705/117 ; 692/699/1785/31 ; 704/106/35 ; 704/172 ; Accuracy ; Acetolysis ; Environmental monitoring ; Genera ; Hay fever ; Humanities and Social Sciences ; multidisciplinary ; Multidisciplinary Sciences ; Neural networks ; Parietaria ; Pollen ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Urtica ; Urticaceae</subject><ispartof>Scientific reports, 2021-05, Vol.11 (1), p.11357-11357, Article 11357</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000659202500010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c541t-1afb11d24f871997062d26cf8a08a31fd559fd5b45248c458bdb505eb9d7d0c43</citedby><cites>FETCH-LOGICAL-c541t-1afb11d24f871997062d26cf8a08a31fd559fd5b45248c458bdb505eb9d7d0c43</cites><orcidid>0000-0002-4439-3681 ; 0000-0002-9067-7407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166864/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166864/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,26572,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids></links><search><creatorcontrib>Polling, Marcel</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Cao, Lu</creatorcontrib><creatorcontrib>Verbeek, Fons</creatorcontrib><creatorcontrib>de Weger, Letty A.</creatorcontrib><creatorcontrib>Belmonte, Jordina</creatorcontrib><creatorcontrib>De Linares, Concepción</creatorcontrib><creatorcontrib>Willemse, Joost</creatorcontrib><creatorcontrib>de Boer, Hugo</creatorcontrib><creatorcontrib>Gravendeel, Barbara</creatorcontrib><title>Neural networks for increased accuracy of allergenic pollen monitoring</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><description>Monitoring of airborne pollen concentrations provides an important source of information for the globally increasing number of hay fever patients. Airborne pollen is traditionally counted under the microscope, but with the latest developments in image recognition methods, automating this process has become feasible. A challenge that persists, however, is that many pollen grains cannot be distinguished beyond the genus or family level using a microscope. Here, we assess the use of Convolutional Neural Networks (CNNs) to increase taxonomic accuracy for airborne pollen. As a case study we use the nettle family (Urticaceae), which contains two main genera ( Urtica and Parietaria ) common in European landscapes which pollen cannot be separated by trained specialists. While pollen from Urtica species has very low allergenic relevance, pollen from several species of Parietaria is severely allergenic. We collect pollen from both fresh as well as from herbarium specimens and use these without the often used acetolysis step to train the CNN model. The models show that unacetolyzed Urticaceae pollen grains can be distinguished with &gt; 98% accuracy. We then apply our model on before unseen Urticaceae pollen collected from aerobiological samples and show that the genera can be confidently distinguished, despite the more challenging input images that are often overlain by debris. Our method can also be applied to other pollen families in the future and will thus help to make allergenic pollen monitoring more specific.</description><subject>631/1647/328/2240</subject><subject>631/449</subject><subject>639/705/117</subject><subject>692/699/1785/31</subject><subject>704/106/35</subject><subject>704/172</subject><subject>Accuracy</subject><subject>Acetolysis</subject><subject>Environmental monitoring</subject><subject>Genera</subject><subject>Hay fever</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Neural networks</subject><subject>Parietaria</subject><subject>Pollen</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Urtica</subject><subject>Urticaceae</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNqNUk1v1DAQjRCIVqV_gAuRuCBVAX9m7QsSWlGoVMEFzpZjjxcvWXuxHdr--zqbUigHhA_2yDPvvfH4Nc1zjF5jRMWbzDCXokMEdxIxSrvrR80xQYx3hBLy-I_4qDnNeYvq4kQyLJ82R5QhLleMHjfnn2BKemwDlKuYvufWxdT6YBLoDLbVxtS0uWmja_U4QtpA8KbdxxqHdheDLzH5sHnWPHF6zHB6d540X8_ff1l_7C4_f7hYv7vsDGe4dFi7AWNLmBMrLOUK9cSS3jihkdAUO8u5rNvAOGHCMC4GO3DEYZB2ZZFh9KS5WHht1Fu1T36n042K2qvDRUwbpVPxZgTFHHYU9YO2YBiSTPAqAcQYgwiVnFSutwvXfhp2YA2EUifxgPRhJvhvahN_KoH7XvRzMy8WApN8Lj6oEJNWGAlOlMQYzxKv7iRS_DFBLmrns4Fx1AHilBXhlIv6GWQme_lX6TZOKdRhzlVMINYfCMkvyZhzAnffLkZq9oVafKGqL9TBF-q6gsQCuoIhumw8BAP3wOqLnkuCCK8RRmtfdPExrOMUSoWe_T-0VtOlOu9nU0D6_YZ_tHcL0FfY8A</recordid><startdate>20210531</startdate><enddate>20210531</enddate><creator>Polling, Marcel</creator><creator>Li, Chen</creator><creator>Cao, Lu</creator><creator>Verbeek, Fons</creator><creator>de Weger, Letty A.</creator><creator>Belmonte, Jordina</creator><creator>De Linares, Concepción</creator><creator>Willemse, Joost</creator><creator>de Boer, Hugo</creator><creator>Gravendeel, Barbara</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4439-3681</orcidid><orcidid>https://orcid.org/0000-0002-9067-7407</orcidid></search><sort><creationdate>20210531</creationdate><title>Neural networks for increased accuracy of allergenic pollen monitoring</title><author>Polling, Marcel ; Li, Chen ; Cao, Lu ; Verbeek, Fons ; de Weger, Letty A. ; Belmonte, Jordina ; De Linares, Concepción ; Willemse, Joost ; de Boer, Hugo ; Gravendeel, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-1afb11d24f871997062d26cf8a08a31fd559fd5b45248c458bdb505eb9d7d0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/328/2240</topic><topic>631/449</topic><topic>639/705/117</topic><topic>692/699/1785/31</topic><topic>704/106/35</topic><topic>704/172</topic><topic>Accuracy</topic><topic>Acetolysis</topic><topic>Environmental monitoring</topic><topic>Genera</topic><topic>Hay fever</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Neural networks</topic><topic>Parietaria</topic><topic>Pollen</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Urtica</topic><topic>Urticaceae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polling, Marcel</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Cao, Lu</creatorcontrib><creatorcontrib>Verbeek, Fons</creatorcontrib><creatorcontrib>de Weger, Letty A.</creatorcontrib><creatorcontrib>Belmonte, Jordina</creatorcontrib><creatorcontrib>De Linares, Concepción</creatorcontrib><creatorcontrib>Willemse, Joost</creatorcontrib><creatorcontrib>de Boer, Hugo</creatorcontrib><creatorcontrib>Gravendeel, Barbara</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polling, Marcel</au><au>Li, Chen</au><au>Cao, Lu</au><au>Verbeek, Fons</au><au>de Weger, Letty A.</au><au>Belmonte, Jordina</au><au>De Linares, Concepción</au><au>Willemse, Joost</au><au>de Boer, Hugo</au><au>Gravendeel, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural networks for increased accuracy of allergenic pollen monitoring</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><date>2021-05-31</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>11357</spage><epage>11357</epage><pages>11357-11357</pages><artnum>11357</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Monitoring of airborne pollen concentrations provides an important source of information for the globally increasing number of hay fever patients. Airborne pollen is traditionally counted under the microscope, but with the latest developments in image recognition methods, automating this process has become feasible. A challenge that persists, however, is that many pollen grains cannot be distinguished beyond the genus or family level using a microscope. Here, we assess the use of Convolutional Neural Networks (CNNs) to increase taxonomic accuracy for airborne pollen. As a case study we use the nettle family (Urticaceae), which contains two main genera ( Urtica and Parietaria ) common in European landscapes which pollen cannot be separated by trained specialists. While pollen from Urtica species has very low allergenic relevance, pollen from several species of Parietaria is severely allergenic. We collect pollen from both fresh as well as from herbarium specimens and use these without the often used acetolysis step to train the CNN model. The models show that unacetolyzed Urticaceae pollen grains can be distinguished with &gt; 98% accuracy. We then apply our model on before unseen Urticaceae pollen collected from aerobiological samples and show that the genera can be confidently distinguished, despite the more challenging input images that are often overlain by debris. Our method can also be applied to other pollen families in the future and will thus help to make allergenic pollen monitoring more specific.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34059743</pmid><doi>10.1038/s41598-021-90433-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4439-3681</orcidid><orcidid>https://orcid.org/0000-0002-9067-7407</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-05, Vol.11 (1), p.11357-11357, Article 11357
issn 2045-2322
2045-2322
language eng
recordid cdi_proquest_journals_2534804612
source NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/1647/328/2240
631/449
639/705/117
692/699/1785/31
704/106/35
704/172
Accuracy
Acetolysis
Environmental monitoring
Genera
Hay fever
Humanities and Social Sciences
multidisciplinary
Multidisciplinary Sciences
Neural networks
Parietaria
Pollen
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Urtica
Urticaceae
title Neural networks for increased accuracy of allergenic pollen monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20networks%20for%20increased%20accuracy%20of%20allergenic%20pollen%20monitoring&rft.jtitle=Scientific%20reports&rft.au=Polling,%20Marcel&rft.date=2021-05-31&rft.volume=11&rft.issue=1&rft.spage=11357&rft.epage=11357&rft.pages=11357-11357&rft.artnum=11357&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-90433-x&rft_dat=%3Cproquest_webof%3E2534804612%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534804612&rft_id=info:pmid/34059743&rft_doaj_id=oai_doaj_org_article_4f1f306badec4094858a3e2ccc023952&rfr_iscdi=true