Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials

Energy-dependent full field transmission soft X-ray microscopy (TXM) is able to give a full picture at the nanometer scale of the chemical state and spatial distribution of oxygen and other elements relevant for battery materials, providing pixel-by-pixel absorption spectrum. We show different metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-03, Vol.11 (6), p.2791
Hauptverfasser: Sorrentino, Andrea, Simonelli, Laura, Kazzazi, Arefehsadat, Laszczynski, Nina, Birrozzi, Agnese, Mullaliu, Angelo, Pereiro, Eva, Passerini, Stefano, Giorgetti, Marco, Tonti, Dino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 2791
container_title Applied sciences
container_volume 11
creator Sorrentino, Andrea
Simonelli, Laura
Kazzazi, Arefehsadat
Laszczynski, Nina
Birrozzi, Agnese
Mullaliu, Angelo
Pereiro, Eva
Passerini, Stefano
Giorgetti, Marco
Tonti, Dino
description Energy-dependent full field transmission soft X-ray microscopy (TXM) is able to give a full picture at the nanometer scale of the chemical state and spatial distribution of oxygen and other elements relevant for battery materials, providing pixel-by-pixel absorption spectrum. We show different methods to localize chemical inhomogeneities in Li1.2Mn0.56Ni0.16Co0.08O2 particles with and without VOx coating extracted from electrodes at different states of charge. Considering the 3d(Mn,Ni)-2p(O) hybridization, it has been possible to discriminate the chemical state of Mn and Ni in addition to the one of O. Different oxidation states correspond to specific features in the O-K spectra. To localize sample regions with specific compositions we apply two different methods. In the first, the pixel-by-pixel ratios of images collected at different key energies clearly highlight local inhomogeneities. In the second, introduced here for the first time, we directly correlate corresponding pixels of the two images on a xy scatter plot that we call phase map, where we can visualize the distributions as function of thickness as well as absorption artifacts. We can select groups of pixels, and then map regions with similar spectral features. Core-shell distributions of composition are clearly shown in these samples. The coating appears in part to frustrate some of the usual chemical evolution. In addition, we could directly observe several further aspects, such as: distribution of conducting carbon; inhomogeneous state of charge within the electrode; molecular oxygen profiles within a particle. The latter suggests a surface loss with respect to the bulk but an accumulation layer at intermediate depth that could be assigned to retained O2.
doi_str_mv 10.3390/app11062791
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2534703443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fc9717c3ff314e08bf2fb43e65e7b83b</doaj_id><sourcerecordid>2534703443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d75093629be92394ca370d1b8c5d848371342c01f5f7b0f4feecbf70eabb9b3a3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJg0Z78AwseZTXJZDeboxQ_ClsKtYK3kGQTm9I2a7IF99-7tSKdy5sZHu8N8xC6IfgeQOAH1baE4JJyQc7QiGJe5sAIPz_pL9E4pTUeShCoCB6hxVtwXfaRR9Vny6h2aetT8mGXzbyJIZnQ9tkw1b5b-f02X3izymrV22ibfP7tG5tNVLcKA85UZ6NXm3SNLtwAdvyHV-j9-Wk5ec3r-ct08ljnBkrW5Q0vsICSCm0FBcGMAo4boitTNBWrgBNg1GDiCsc1dsxZa7Tj2CqthQYFV2h61G2CWss2-q2KvQzKy99FiJ9Sxc6bjZXOCE64AeeAMIsr7ajTDGxZWK4r0IPW7VGrjeFrb1Mn12Efd8P5khbAOAbGYGDdHVmH16Ro3b8rwfKQgTzJAH4APx55Bw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534703443</pqid></control><display><type>article</type><title>Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sorrentino, Andrea ; Simonelli, Laura ; Kazzazi, Arefehsadat ; Laszczynski, Nina ; Birrozzi, Agnese ; Mullaliu, Angelo ; Pereiro, Eva ; Passerini, Stefano ; Giorgetti, Marco ; Tonti, Dino</creator><creatorcontrib>Sorrentino, Andrea ; Simonelli, Laura ; Kazzazi, Arefehsadat ; Laszczynski, Nina ; Birrozzi, Agnese ; Mullaliu, Angelo ; Pereiro, Eva ; Passerini, Stefano ; Giorgetti, Marco ; Tonti, Dino</creatorcontrib><description>Energy-dependent full field transmission soft X-ray microscopy (TXM) is able to give a full picture at the nanometer scale of the chemical state and spatial distribution of oxygen and other elements relevant for battery materials, providing pixel-by-pixel absorption spectrum. We show different methods to localize chemical inhomogeneities in Li1.2Mn0.56Ni0.16Co0.08O2 particles with and without VOx coating extracted from electrodes at different states of charge. Considering the 3d(Mn,Ni)-2p(O) hybridization, it has been possible to discriminate the chemical state of Mn and Ni in addition to the one of O. Different oxidation states correspond to specific features in the O-K spectra. To localize sample regions with specific compositions we apply two different methods. In the first, the pixel-by-pixel ratios of images collected at different key energies clearly highlight local inhomogeneities. In the second, introduced here for the first time, we directly correlate corresponding pixels of the two images on a xy scatter plot that we call phase map, where we can visualize the distributions as function of thickness as well as absorption artifacts. We can select groups of pixels, and then map regions with similar spectral features. Core-shell distributions of composition are clearly shown in these samples. The coating appears in part to frustrate some of the usual chemical evolution. In addition, we could directly observe several further aspects, such as: distribution of conducting carbon; inhomogeneous state of charge within the electrode; molecular oxygen profiles within a particle. The latter suggests a surface loss with respect to the bulk but an accumulation layer at intermediate depth that could be assigned to retained O2.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app11062791</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption ; Absorption spectra ; Batteries ; Cathodes ; Chemical evolution ; chemical mapping ; Coated electrodes ; Composition ; composition distribution ; Electrode materials ; Electrodes ; Energy ; full-field transmission microscopy ; Hybridization ; Inhomogeneity ; intercalation ; Lithium ; Lithium batteries ; Manganese ; Microscopy ; Oxidation ; Pixels ; Spatial distribution ; stray light ; X ray imagery ; X-rays</subject><ispartof>Applied sciences, 2021-03, Vol.11 (6), p.2791</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-d75093629be92394ca370d1b8c5d848371342c01f5f7b0f4feecbf70eabb9b3a3</citedby><cites>FETCH-LOGICAL-c364t-d75093629be92394ca370d1b8c5d848371342c01f5f7b0f4feecbf70eabb9b3a3</cites><orcidid>0000-0001-7626-5935 ; 0000-0001-7967-8364 ; 0000-0003-0240-1011 ; 0000-0002-6606-5304 ; 0000-0003-2800-2836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Sorrentino, Andrea</creatorcontrib><creatorcontrib>Simonelli, Laura</creatorcontrib><creatorcontrib>Kazzazi, Arefehsadat</creatorcontrib><creatorcontrib>Laszczynski, Nina</creatorcontrib><creatorcontrib>Birrozzi, Agnese</creatorcontrib><creatorcontrib>Mullaliu, Angelo</creatorcontrib><creatorcontrib>Pereiro, Eva</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><creatorcontrib>Giorgetti, Marco</creatorcontrib><creatorcontrib>Tonti, Dino</creatorcontrib><title>Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials</title><title>Applied sciences</title><description>Energy-dependent full field transmission soft X-ray microscopy (TXM) is able to give a full picture at the nanometer scale of the chemical state and spatial distribution of oxygen and other elements relevant for battery materials, providing pixel-by-pixel absorption spectrum. We show different methods to localize chemical inhomogeneities in Li1.2Mn0.56Ni0.16Co0.08O2 particles with and without VOx coating extracted from electrodes at different states of charge. Considering the 3d(Mn,Ni)-2p(O) hybridization, it has been possible to discriminate the chemical state of Mn and Ni in addition to the one of O. Different oxidation states correspond to specific features in the O-K spectra. To localize sample regions with specific compositions we apply two different methods. In the first, the pixel-by-pixel ratios of images collected at different key energies clearly highlight local inhomogeneities. In the second, introduced here for the first time, we directly correlate corresponding pixels of the two images on a xy scatter plot that we call phase map, where we can visualize the distributions as function of thickness as well as absorption artifacts. We can select groups of pixels, and then map regions with similar spectral features. Core-shell distributions of composition are clearly shown in these samples. The coating appears in part to frustrate some of the usual chemical evolution. In addition, we could directly observe several further aspects, such as: distribution of conducting carbon; inhomogeneous state of charge within the electrode; molecular oxygen profiles within a particle. The latter suggests a surface loss with respect to the bulk but an accumulation layer at intermediate depth that could be assigned to retained O2.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Chemical evolution</subject><subject>chemical mapping</subject><subject>Coated electrodes</subject><subject>Composition</subject><subject>composition distribution</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy</subject><subject>full-field transmission microscopy</subject><subject>Hybridization</subject><subject>Inhomogeneity</subject><subject>intercalation</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Manganese</subject><subject>Microscopy</subject><subject>Oxidation</subject><subject>Pixels</subject><subject>Spatial distribution</subject><subject>stray light</subject><subject>X ray imagery</subject><subject>X-rays</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaJg0Z78AwseZTXJZDeboxQ_ClsKtYK3kGQTm9I2a7IF99-7tSKdy5sZHu8N8xC6IfgeQOAH1baE4JJyQc7QiGJe5sAIPz_pL9E4pTUeShCoCB6hxVtwXfaRR9Vny6h2aetT8mGXzbyJIZnQ9tkw1b5b-f02X3izymrV22ibfP7tG5tNVLcKA85UZ6NXm3SNLtwAdvyHV-j9-Wk5ec3r-ct08ljnBkrW5Q0vsICSCm0FBcGMAo4boitTNBWrgBNg1GDiCsc1dsxZa7Tj2CqthQYFV2h61G2CWss2-q2KvQzKy99FiJ9Sxc6bjZXOCE64AeeAMIsr7ajTDGxZWK4r0IPW7VGrjeFrb1Mn12Efd8P5khbAOAbGYGDdHVmH16Ro3b8rwfKQgTzJAH4APx55Bw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sorrentino, Andrea</creator><creator>Simonelli, Laura</creator><creator>Kazzazi, Arefehsadat</creator><creator>Laszczynski, Nina</creator><creator>Birrozzi, Agnese</creator><creator>Mullaliu, Angelo</creator><creator>Pereiro, Eva</creator><creator>Passerini, Stefano</creator><creator>Giorgetti, Marco</creator><creator>Tonti, Dino</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7626-5935</orcidid><orcidid>https://orcid.org/0000-0001-7967-8364</orcidid><orcidid>https://orcid.org/0000-0003-0240-1011</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><orcidid>https://orcid.org/0000-0003-2800-2836</orcidid></search><sort><creationdate>20210301</creationdate><title>Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials</title><author>Sorrentino, Andrea ; Simonelli, Laura ; Kazzazi, Arefehsadat ; Laszczynski, Nina ; Birrozzi, Agnese ; Mullaliu, Angelo ; Pereiro, Eva ; Passerini, Stefano ; Giorgetti, Marco ; Tonti, Dino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d75093629be92394ca370d1b8c5d848371342c01f5f7b0f4feecbf70eabb9b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Chemical evolution</topic><topic>chemical mapping</topic><topic>Coated electrodes</topic><topic>Composition</topic><topic>composition distribution</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy</topic><topic>full-field transmission microscopy</topic><topic>Hybridization</topic><topic>Inhomogeneity</topic><topic>intercalation</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Manganese</topic><topic>Microscopy</topic><topic>Oxidation</topic><topic>Pixels</topic><topic>Spatial distribution</topic><topic>stray light</topic><topic>X ray imagery</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorrentino, Andrea</creatorcontrib><creatorcontrib>Simonelli, Laura</creatorcontrib><creatorcontrib>Kazzazi, Arefehsadat</creatorcontrib><creatorcontrib>Laszczynski, Nina</creatorcontrib><creatorcontrib>Birrozzi, Agnese</creatorcontrib><creatorcontrib>Mullaliu, Angelo</creatorcontrib><creatorcontrib>Pereiro, Eva</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><creatorcontrib>Giorgetti, Marco</creatorcontrib><creatorcontrib>Tonti, Dino</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorrentino, Andrea</au><au>Simonelli, Laura</au><au>Kazzazi, Arefehsadat</au><au>Laszczynski, Nina</au><au>Birrozzi, Agnese</au><au>Mullaliu, Angelo</au><au>Pereiro, Eva</au><au>Passerini, Stefano</au><au>Giorgetti, Marco</au><au>Tonti, Dino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials</atitle><jtitle>Applied sciences</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>2791</spage><pages>2791-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Energy-dependent full field transmission soft X-ray microscopy (TXM) is able to give a full picture at the nanometer scale of the chemical state and spatial distribution of oxygen and other elements relevant for battery materials, providing pixel-by-pixel absorption spectrum. We show different methods to localize chemical inhomogeneities in Li1.2Mn0.56Ni0.16Co0.08O2 particles with and without VOx coating extracted from electrodes at different states of charge. Considering the 3d(Mn,Ni)-2p(O) hybridization, it has been possible to discriminate the chemical state of Mn and Ni in addition to the one of O. Different oxidation states correspond to specific features in the O-K spectra. To localize sample regions with specific compositions we apply two different methods. In the first, the pixel-by-pixel ratios of images collected at different key energies clearly highlight local inhomogeneities. In the second, introduced here for the first time, we directly correlate corresponding pixels of the two images on a xy scatter plot that we call phase map, where we can visualize the distributions as function of thickness as well as absorption artifacts. We can select groups of pixels, and then map regions with similar spectral features. Core-shell distributions of composition are clearly shown in these samples. The coating appears in part to frustrate some of the usual chemical evolution. In addition, we could directly observe several further aspects, such as: distribution of conducting carbon; inhomogeneous state of charge within the electrode; molecular oxygen profiles within a particle. The latter suggests a surface loss with respect to the bulk but an accumulation layer at intermediate depth that could be assigned to retained O2.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app11062791</doi><orcidid>https://orcid.org/0000-0001-7626-5935</orcidid><orcidid>https://orcid.org/0000-0001-7967-8364</orcidid><orcidid>https://orcid.org/0000-0003-0240-1011</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><orcidid>https://orcid.org/0000-0003-2800-2836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2021-03, Vol.11 (6), p.2791
issn 2076-3417
2076-3417
language eng
recordid cdi_proquest_journals_2534703443
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Absorption
Absorption spectra
Batteries
Cathodes
Chemical evolution
chemical mapping
Coated electrodes
Composition
composition distribution
Electrode materials
Electrodes
Energy
full-field transmission microscopy
Hybridization
Inhomogeneity
intercalation
Lithium
Lithium batteries
Manganese
Microscopy
Oxidation
Pixels
Spatial distribution
stray light
X ray imagery
X-rays
title Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20X-ray%20Transmission%20Microscopy%20on%20Lithium-Rich%20Layered-Oxide%20Cathode%20Materials&rft.jtitle=Applied%20sciences&rft.au=Sorrentino,%20Andrea&rft.date=2021-03-01&rft.volume=11&rft.issue=6&rft.spage=2791&rft.pages=2791-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app11062791&rft_dat=%3Cproquest_doaj_%3E2534703443%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534703443&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_fc9717c3ff314e08bf2fb43e65e7b83b&rfr_iscdi=true