Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities

•CoS2/CNTs nanocomposite was fabricated via hydrothermal and post-annealing approach.•The freestanding design and 3D nickel foam were used to improve the kinetics of the electrochemical reaction.•The CoS2/CNTs@NF electrode showed higher specific capacity (499.8 C g−1) than that of pristine CoS2@NF e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-07, Vol.383, p.138332, Article 138332
Hauptverfasser: Aadil, Muhammad, Zulfiqar, Sonia, Shahid, Muhammad, Agboola, Philips O, Al-Khalli, Najeeb Faud, Warsi, Muhammad Farooq, Shakir, Imran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 138332
container_title Electrochimica acta
container_volume 383
creator Aadil, Muhammad
Zulfiqar, Sonia
Shahid, Muhammad
Agboola, Philips O
Al-Khalli, Najeeb Faud
Warsi, Muhammad Farooq
Shakir, Imran
description •CoS2/CNTs nanocomposite was fabricated via hydrothermal and post-annealing approach.•The freestanding design and 3D nickel foam were used to improve the kinetics of the electrochemical reaction.•The CoS2/CNTs@NF electrode showed higher specific capacity (499.8 C g−1) than that of pristine CoS2@NF electrode (387.6 C g−1) at 1 A g−1.•The nanocomposite also exhibit superior rate capability and cyclic-stability than the pristine CoS2 sample. Electroactive materials with higher surface area, porous structure, higher conductivity, and self-supported design are considered promising candidates for electrochemical applications. The fabrication of an electrode material with a unique design having all the features mentioned above is a major challenge for electrochemical researchers. In this work, pristine CoS2 nanoparticles and CoS2/CNTs nanocomposite have been prepared and decorated directly on nickel foam (NF) using a two-step approach: hydrothermal and post-annealing, for energy storage applications. The CoS2/CNTs@NF electrode shows superior performance as it has a specific capacity (Csp) of 499.8 C g−1 @ 1 A g−1 and excellent cyclic stability of 90.8% after 6000 GCD cycles @ 12 A g−1. The CNTs-supported CoS2 sample displays a minimum capacitance loss of 13.5% by increasing the applied current density from 1 to 12 A g−1, demonstrating its excellent rate-capability. Furthermore, the EIS results show that the value of the charge transfer resistance (RCT) and the mass transfer resistance for CoS2 decreases after its nanocomposite formation with conductive CNTs. The exceptional electrochemical activity of the CoS2/CNTs@NF electrode has been attributed to the synergistic effect of its self-standing design, larger specific surface area, porous-nanostructure, and hybrid composition. The present study provides a new way of designing the electrode material with integrated electrochemical features. [Display omitted]
doi_str_mv 10.1016/j.electacta.2021.138332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2534643415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621006228</els_id><sourcerecordid>2534643415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4615988f854f7044c2566b3826a13a63a7640bd874821a00999285755b8d1c003</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKefwYDPnUnzp-njGE6FoS_zOaRp6lLapibpxG9vZsVX4cJ9Offcc34A3GK0wgjz-3ZlOqOjSrPKUY5XmAhC8jOwwKIgGRGsPAcLhDDJKBf8ElyF0CKECl6gBXBbVXmrVbRugK6Bm5d9gGEaR-ejqWFlB-W_4KAGp10_umCjgZ82HmA_ddGOnYEhehXNuzUBRgcr50KEP4m80wfTJ-8OpnD2aGPSXIOLRnXB3PzuJXjbPuw3T9nu9fF5s95lmlASU1LMSiEawWhTIEp1zjiviMi5wkRxogpOUVWLgoocK4TKsswFKxirRI01QmQJ7mbf0buPyYQoWzf5Ib2UOSOUU0IxS6piVmnvQvCmkaO3fWosMZInurKVf3Tlia6c6abL9XxpUomjNV4Gbc2gTW190sva2X89vgFHGYe6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534643415</pqid></control><display><type>article</type><title>Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities</title><source>Elsevier ScienceDirect Journals</source><creator>Aadil, Muhammad ; Zulfiqar, Sonia ; Shahid, Muhammad ; Agboola, Philips O ; Al-Khalli, Najeeb Faud ; Warsi, Muhammad Farooq ; Shakir, Imran</creator><creatorcontrib>Aadil, Muhammad ; Zulfiqar, Sonia ; Shahid, Muhammad ; Agboola, Philips O ; Al-Khalli, Najeeb Faud ; Warsi, Muhammad Farooq ; Shakir, Imran</creatorcontrib><description>•CoS2/CNTs nanocomposite was fabricated via hydrothermal and post-annealing approach.•The freestanding design and 3D nickel foam were used to improve the kinetics of the electrochemical reaction.•The CoS2/CNTs@NF electrode showed higher specific capacity (499.8 C g−1) than that of pristine CoS2@NF electrode (387.6 C g−1) at 1 A g−1.•The nanocomposite also exhibit superior rate capability and cyclic-stability than the pristine CoS2 sample. Electroactive materials with higher surface area, porous structure, higher conductivity, and self-supported design are considered promising candidates for electrochemical applications. The fabrication of an electrode material with a unique design having all the features mentioned above is a major challenge for electrochemical researchers. In this work, pristine CoS2 nanoparticles and CoS2/CNTs nanocomposite have been prepared and decorated directly on nickel foam (NF) using a two-step approach: hydrothermal and post-annealing, for energy storage applications. The CoS2/CNTs@NF electrode shows superior performance as it has a specific capacity (Csp) of 499.8 C g−1 @ 1 A g−1 and excellent cyclic stability of 90.8% after 6000 GCD cycles @ 12 A g−1. The CNTs-supported CoS2 sample displays a minimum capacitance loss of 13.5% by increasing the applied current density from 1 to 12 A g−1, demonstrating its excellent rate-capability. Furthermore, the EIS results show that the value of the charge transfer resistance (RCT) and the mass transfer resistance for CoS2 decreases after its nanocomposite formation with conductive CNTs. The exceptional electrochemical activity of the CoS2/CNTs@NF electrode has been attributed to the synergistic effect of its self-standing design, larger specific surface area, porous-nanostructure, and hybrid composition. The present study provides a new way of designing the electrode material with integrated electrochemical features. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.138332</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Charge transfer ; CNTs ; Cobalt sulfide ; CoS2 ; Electroactive materials ; Electrode materials ; Electrodes ; Energy storage ; Hydrothermal ; Mass transfer ; Metal foams ; Nanocomposite ; Nanocomposites ; Nanoparticles ; Nickel foam ; Specific capacity ; Surface area ; Synergistic effect</subject><ispartof>Electrochimica acta, 2021-07, Vol.383, p.138332, Article 138332</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-4615988f854f7044c2566b3826a13a63a7640bd874821a00999285755b8d1c003</citedby><cites>FETCH-LOGICAL-c343t-4615988f854f7044c2566b3826a13a63a7640bd874821a00999285755b8d1c003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2021.138332$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Aadil, Muhammad</creatorcontrib><creatorcontrib>Zulfiqar, Sonia</creatorcontrib><creatorcontrib>Shahid, Muhammad</creatorcontrib><creatorcontrib>Agboola, Philips O</creatorcontrib><creatorcontrib>Al-Khalli, Najeeb Faud</creatorcontrib><creatorcontrib>Warsi, Muhammad Farooq</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><title>Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities</title><title>Electrochimica acta</title><description>•CoS2/CNTs nanocomposite was fabricated via hydrothermal and post-annealing approach.•The freestanding design and 3D nickel foam were used to improve the kinetics of the electrochemical reaction.•The CoS2/CNTs@NF electrode showed higher specific capacity (499.8 C g−1) than that of pristine CoS2@NF electrode (387.6 C g−1) at 1 A g−1.•The nanocomposite also exhibit superior rate capability and cyclic-stability than the pristine CoS2 sample. Electroactive materials with higher surface area, porous structure, higher conductivity, and self-supported design are considered promising candidates for electrochemical applications. The fabrication of an electrode material with a unique design having all the features mentioned above is a major challenge for electrochemical researchers. In this work, pristine CoS2 nanoparticles and CoS2/CNTs nanocomposite have been prepared and decorated directly on nickel foam (NF) using a two-step approach: hydrothermal and post-annealing, for energy storage applications. The CoS2/CNTs@NF electrode shows superior performance as it has a specific capacity (Csp) of 499.8 C g−1 @ 1 A g−1 and excellent cyclic stability of 90.8% after 6000 GCD cycles @ 12 A g−1. The CNTs-supported CoS2 sample displays a minimum capacitance loss of 13.5% by increasing the applied current density from 1 to 12 A g−1, demonstrating its excellent rate-capability. Furthermore, the EIS results show that the value of the charge transfer resistance (RCT) and the mass transfer resistance for CoS2 decreases after its nanocomposite formation with conductive CNTs. The exceptional electrochemical activity of the CoS2/CNTs@NF electrode has been attributed to the synergistic effect of its self-standing design, larger specific surface area, porous-nanostructure, and hybrid composition. The present study provides a new way of designing the electrode material with integrated electrochemical features. [Display omitted]</description><subject>Charge transfer</subject><subject>CNTs</subject><subject>Cobalt sulfide</subject><subject>CoS2</subject><subject>Electroactive materials</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Hydrothermal</subject><subject>Mass transfer</subject><subject>Metal foams</subject><subject>Nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nickel foam</subject><subject>Specific capacity</subject><subject>Surface area</subject><subject>Synergistic effect</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKefwYDPnUnzp-njGE6FoS_zOaRp6lLapibpxG9vZsVX4cJ9Offcc34A3GK0wgjz-3ZlOqOjSrPKUY5XmAhC8jOwwKIgGRGsPAcLhDDJKBf8ElyF0CKECl6gBXBbVXmrVbRugK6Bm5d9gGEaR-ejqWFlB-W_4KAGp10_umCjgZ82HmA_ddGOnYEhehXNuzUBRgcr50KEP4m80wfTJ-8OpnD2aGPSXIOLRnXB3PzuJXjbPuw3T9nu9fF5s95lmlASU1LMSiEawWhTIEp1zjiviMi5wkRxogpOUVWLgoocK4TKsswFKxirRI01QmQJ7mbf0buPyYQoWzf5Ib2UOSOUU0IxS6piVmnvQvCmkaO3fWosMZInurKVf3Tlia6c6abL9XxpUomjNV4Gbc2gTW190sva2X89vgFHGYe6</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Aadil, Muhammad</creator><creator>Zulfiqar, Sonia</creator><creator>Shahid, Muhammad</creator><creator>Agboola, Philips O</creator><creator>Al-Khalli, Najeeb Faud</creator><creator>Warsi, Muhammad Farooq</creator><creator>Shakir, Imran</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210701</creationdate><title>Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities</title><author>Aadil, Muhammad ; Zulfiqar, Sonia ; Shahid, Muhammad ; Agboola, Philips O ; Al-Khalli, Najeeb Faud ; Warsi, Muhammad Farooq ; Shakir, Imran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4615988f854f7044c2566b3826a13a63a7640bd874821a00999285755b8d1c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>CNTs</topic><topic>Cobalt sulfide</topic><topic>CoS2</topic><topic>Electroactive materials</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Hydrothermal</topic><topic>Mass transfer</topic><topic>Metal foams</topic><topic>Nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nickel foam</topic><topic>Specific capacity</topic><topic>Surface area</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aadil, Muhammad</creatorcontrib><creatorcontrib>Zulfiqar, Sonia</creatorcontrib><creatorcontrib>Shahid, Muhammad</creatorcontrib><creatorcontrib>Agboola, Philips O</creatorcontrib><creatorcontrib>Al-Khalli, Najeeb Faud</creatorcontrib><creatorcontrib>Warsi, Muhammad Farooq</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aadil, Muhammad</au><au>Zulfiqar, Sonia</au><au>Shahid, Muhammad</au><au>Agboola, Philips O</au><au>Al-Khalli, Najeeb Faud</au><au>Warsi, Muhammad Farooq</au><au>Shakir, Imran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities</atitle><jtitle>Electrochimica acta</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>383</volume><spage>138332</spage><pages>138332-</pages><artnum>138332</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•CoS2/CNTs nanocomposite was fabricated via hydrothermal and post-annealing approach.•The freestanding design and 3D nickel foam were used to improve the kinetics of the electrochemical reaction.•The CoS2/CNTs@NF electrode showed higher specific capacity (499.8 C g−1) than that of pristine CoS2@NF electrode (387.6 C g−1) at 1 A g−1.•The nanocomposite also exhibit superior rate capability and cyclic-stability than the pristine CoS2 sample. Electroactive materials with higher surface area, porous structure, higher conductivity, and self-supported design are considered promising candidates for electrochemical applications. The fabrication of an electrode material with a unique design having all the features mentioned above is a major challenge for electrochemical researchers. In this work, pristine CoS2 nanoparticles and CoS2/CNTs nanocomposite have been prepared and decorated directly on nickel foam (NF) using a two-step approach: hydrothermal and post-annealing, for energy storage applications. The CoS2/CNTs@NF electrode shows superior performance as it has a specific capacity (Csp) of 499.8 C g−1 @ 1 A g−1 and excellent cyclic stability of 90.8% after 6000 GCD cycles @ 12 A g−1. The CNTs-supported CoS2 sample displays a minimum capacitance loss of 13.5% by increasing the applied current density from 1 to 12 A g−1, demonstrating its excellent rate-capability. Furthermore, the EIS results show that the value of the charge transfer resistance (RCT) and the mass transfer resistance for CoS2 decreases after its nanocomposite formation with conductive CNTs. The exceptional electrochemical activity of the CoS2/CNTs@NF electrode has been attributed to the synergistic effect of its self-standing design, larger specific surface area, porous-nanostructure, and hybrid composition. The present study provides a new way of designing the electrode material with integrated electrochemical features. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.138332</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-07, Vol.383, p.138332, Article 138332
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2534643415
source Elsevier ScienceDirect Journals
subjects Charge transfer
CNTs
Cobalt sulfide
CoS2
Electroactive materials
Electrode materials
Electrodes
Energy storage
Hydrothermal
Mass transfer
Metal foams
Nanocomposite
Nanocomposites
Nanoparticles
Nickel foam
Specific capacity
Surface area
Synergistic effect
title Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20CNTs%20supported%20binary%20nanocomposite%20with%20multiple%20strategies%20to%20boost%20electrochemical%20activities&rft.jtitle=Electrochimica%20acta&rft.au=Aadil,%20Muhammad&rft.date=2021-07-01&rft.volume=383&rft.spage=138332&rft.pages=138332-&rft.artnum=138332&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.138332&rft_dat=%3Cproquest_cross%3E2534643415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534643415&rft_id=info:pmid/&rft_els_id=S0013468621006228&rfr_iscdi=true